
Computer Science 62

Bruce/Mawhorter – Fall ‘16

Midterm Examination

October 5, 2016

 Question Points Score

1 15 ____

2 10 ____

3 10 ____

4 8 ____

5 9 ____

 TOTAL 52 ____

SOLUTIONS
Your name (Please print)

CS 062 Midterm 3/5/2012

1. Suppose you are given a singly-linked list class that holds strings and that
maintains pointers to both the head and the tail of the list. Its fields and
constructors are as follows:

public class SinglyLinkedList {
protected ListNode head;
protected ListNode tail;

public SinglyLinkedList() {
this.head = null;
this.tail = null;

}

...
}

The ListNode class looks like this:

public class ListNode {
private String value;
private ListNode next;

public ListNode(String value, ListNode next) {
this.value = value;
this.next = next;

}

public String getValue() {
return this.value;

}

public ListNode getNext() {
return this.next;

}

public String setValue(String newValue) {
this.value = newValue;

}

public ListNode setNext(ListNode newNext) {
this.next = newNext;

}
}

CS 062 Midterm 3/5/2012

Please add a new method to the class SinglyLinkedList with header:
public void keep(int howMany) {

which should modify the list so it only keeps the first howMany elements,
dropping the rest of the elements from the list. E.g., if myList originally contains
10 elements, then executing myList.keep(6) should result in myList having
only the first 6 elements of the list. You don't need to worry about keeping track of
the discarded nodes as long as you cut them off from the rest of the list.

a. Write the pre- and post- conditions for the keep method. Just describe them
in English.

Pre: howMany > 0
 (adding howMany < size or howMany <= size is okay too)
Post: list has <= howMany elements
 (<= if we accept howMany > size and do nothing)

b. List at least one special case that either violates your preconditions or requires
special handling.

HowMany = 0
howMany == size
howMany < 0

c. Write the code for keep on the next page (you don't need to worry about
comments). Remember that you should check your preconditions (you can use
"RuntimeError" if you need to throw any exceptions).

CS 062 Midterm 3/5/2012

public void keep(int howMany) {

if (howMany < 0) {

throw new RuntimeError(“Can’t keep a negative number

of elements.”);

} else if (howMany == 0) {

this.head = null;

this.tail = null;

}

this.tail = this.head; // set tail to head → reduce list to size 1

while (howMany > 1 && this.tail != null) {

this.tail = this.tail.next; // set tail to next element, adding

1 to kept size

howMany -= 1; // decrement counter

}

// now we just need to chop off the rest of the list:

this.tail.next = null;

// that’s it. We don’t have a size variable to modify or

anything like that

}

CS 062 Midterm 3/5/2012

2. You have a singly linked list with only a head pointer (see the
figure below). The insert() method for the list inserts new
values into the list so that the elements remain in sorted order
using the obvious algorithm. In other words, after each

insertion, the
list is in
sorted order.

a. Assume you
are given a
sequence of n
values to
insert one at
a time into

the list. What do you expect the total worst-case running time
to be, using big-O notation, for inserting all of the values into
the list? Give a brief (one to two sentence) justification for
your answer.

To insert a sequence of n values will take O(n^2) time. The reason for this is that on
average, inserting the nth element will take n/2 time (scanning through the list to
find the right place which on average is the center of previously inserted elements).
So the runtime is the sum from i = 0 to n of i, times a constant (½) which is O(n^2).

b. Suppose that the sequence of n values to be inserted just
happen to be in reverse sorted order. E.g., you might be
given the elements 47, 23, 19, 13, 7, 6, and finally 2. What
do you expect the running time to be, using big-O notation,
for inserting all of n values into the list? Give a brief (one to
two sentence) justification for your answer.

Now the run-time for inserting n elements will be O(n), because each insert will be
O(1). This is because each insertion will be smaller than the first element of the list,
and so it’ll live there without the need to do more than 1 comparison.

Note that for this problem and the one above, the question is asking about the time
to insert all n values, not the time to insert a single value.

CS 062 Midterm 3/5/2012

3. Suppose we have a list of ints held as an ArrayList. As you may recall, the elements
of the list are held in an array elts, with instance variable eltsFilled keeping track of
the number of elements in the list. The standard implementation of an iterator for an
ArrayList presents the elements of the array (one at a time) from slot 0 to slot
eltsFilled -1.

However, for a particular application we want to design a special iterator (call it
inOrderIterator) that presents the elements of the list in numeric order. Please
describe in words (no Java code necessary) how you would initialize the iterator (i.e.,
what the constructor would do), and how you would write the hasNext() and
next() methods.

You may assume that the iterator is an inner class of the ArrayList
class (thus giving it access to the instance variables of ArrayList).
The initialization of the iterator should take no more than O (n log
n) time in the worst case (where n is the size of the list) and the
methods next() and hasNext() should each be O(1). The contents of
the array elts should not be modified by the construction or use of
the iterator. You may use any extra storage needed to create the
iterator.

To initialize the iterator, you make a copy of the array
contents and sort that copy. The hasNext and next methods
then just use an index into that sorted array and return the
appropriate value from it each time.

This is O(n log n) for initializing the iterator and O(1) for
each call to hasNext and/or next.

CS 062 Midterm 3/5/2012

4. An advantage of using stacks and queues is that their limited
number of operations allows more efficient representation than
more general data structures. Please answer the following
questions about the complexity of operations on queues, expressing
all answers in big-O notation.

A queue may be represented by a “circular” implementation on an
array (or ArrayList) or by a singly linked list with a reference to
both the front and rear. Please give the complexity of the following
queue operations on a queue of size n for each representation,
including one or two sentences justifying your answer.
 i) Enqueuing an element at the rear of the queue with a

 circular array:

This is O(1). You just add the element to an empty spot in
the array after the current tail and increment your tail
index. If the queue is out of space it’s O(n), but with a
doubling policy this happens infrequently enough that
enqueueing is still amortized O(1) per operation.

 linked list:

This is O(1). You just add a new node to the end and advance
the tail pointer.

 ii) Dequeing an element from the front of the queue with a

 circular array:

Still O(1). Just advance the head index by 1.

 linked list:

Also O(1) (there’s a pattern here). Just remove head and set
new head to old head.next.

CS 062 Midterm 3/5/2012

5. Short answer

a. Describe carefully in words what happens when you insert an element into an
ArrayList when it is already filled to capacity.

A new array (not a new ArrayList) is allocated with double the old capacity and all
of the old elements are copied over to this new array in an O(n) operation.

b. We noted that when using Java graphics, we must call the
method repaint (which the programmer doesn’t write) in order to
get the computer to eventually call the method paint, which is the
one the programmer actually writes. Please explain why this
happens and what data structure that we have discussed in class is
used to make this all work.

This happens because paint() is a callback: Java is in charge of
deciding when to call it. Repaint() is just a way to tell Java:
“Hey you know that paint method? Could you please call it?” As
for the data structure, the mechanism for this interaction is
the event queue that we discussed in class. Repaint puts an
event on that queue, and whenever that event is processed, it
will trigger a paint call.

c. Explain how the run-time stack changes when a method is
invoked and when the method completes execution.

When a method is invoked, an activation record is pushed onto
the stack. When a method returns, that record is popped from
the stack (this question is just looking for the basics).

