Computer Science 136
Spring 2004
Professor Bruce

Final Examination
May 19, 2004

Question Points Score

10

8
15
12
12

8
10
TOTAL 65

N QN U AW =

Your name (Please print)

I have neither given nor received aid on this examination.

(signature)

1.

In class we only discussed binary trees, that is, trees in which each node has at most
two children. In general trees, nodes may have any number of children.

/TN
N TAN
E F G H | J
Since we do not know in advance how many children a node will have, we do not
know how many child links to include in a node, we instead provide each node with a
link to one of its children (you can think of it as an "eldest child" link) and then a link

to its next eldest sibling (brother or sister). (We won't bother with a pointer to the
parent.) The following structure represents the tree above.

child val sib

/ A
4
J/ B >¥/ C —-PJ/ D
/ E ——>/ F /| G /| M —>

4 ¥ ¥ 4

Notice that this representation differs from that in the HexAPawn program in that the
game tree there represented all of the children by a Vector, whereas here we use only
GenTreeNode objects and have explicit sib field in each node.

A pre-order traversal is defined the same way as for binary trees: visit the root then
do pre-order traversals of all the subtrees headed by the roots children, processing the
child subtrees from left to right. Below we provide a definition of a general tree
node. Please add the body of the preOrder method. You may presume there is a
parameterless method visit() which can be sent to an object of type ValType (the type
of the value field of the nodes). I highly recommend using recursion.

public class GenTreeNode{
protected GenTreeNode child, sib;
protected ValType val;
public GenTreeNode(ValType thevVal) {
val = theval; child = null; sib = null;
}
public GenTreeNode getEldestChild(){ return child;}

public GenTreeNode getNextSibling(){ return sib;}
public ValType getValue(){ return val;}
// other methods omitted

// Post: Performed pre-order traversal on tree headed by
// this node, sending visit() to all nodes encountered.
// Each node is visited exactly once in the traversal

public void preOrder () {

The main differences between a general tree and a graph is that a tree has a special
node designated to be a root and may not include any cycles among its edges. That
is, there are no paths from a node back to itself that do not retrace any edges.

We remarked in class that a depth-first search of a graph is similar to a pre-order
traversal of a tree. What extra complications must you be concerned about when
doing a depth-first search of a graph that you didn't have to worry about with the
general tree?

2. With a more thoughtful implementation, it is possible to traverse a singly-linked list
both forward and backward from the current node. This is done by reversing links
each time the current node is moved to the right and 'fixing' the link each time the
current node is moved to the left. For example, if the current node were the fourth
node in the list, the list would look like this:

P
S

head left current
"Current" points to the current node and "left" to the node on its left. Note that all of
the nodes to the left of "current" have their links reversed, that is, they point to their
predecessor instead of their successor. Write a method moveRight() which moves the
current node one node to the right from an arbitrary position of this form, adjusting all
necessary pointers. Note that if "current" points to the first node of the list, "left" will
have value null. When the move is completed, the list should again appear as above

(i.e. pointers to the right of current pointing to the right, those to the left, pointing to
the left).

You may use SinglyLinkedListElement from the structures library:
class SinglyLinkedListElement {

protected Object data; // value stored in this element

protected SinglyLinkedListElement nextElement;

public SinglyLinkedListElement next(){...}

// post: returns reference to next value in list

public void setNext(SinglyLinkedListElement next){...}

// post: sets reference to new next value

public Object value(){...}

// post: returns value associated with this element

public void setValue(Object value){...}

// post: sets value associated with this element

public class TraversibleList{
SinglyLinkedListElement head, left, current;

public TraversibleList(){ head = left = current = null;}

/* pre: List non-empty, current refers to node of list.

post: The "current" node is moved one to the right. "left"
points to node to left of current. If already at last node, set
current to NIL and "left" to point to last node. */

public void moveRight(){ // £ill in details

(Hash tables)
If you are using a hash function based on the division function then the best choice
for table size is: (a) a power of two b) a prime number (c) a perfect square.

. With a hash function based on the "mid-square" method, the best choice for table size
is: (a) apower of two (b) a prime number (c) a perfect square.

One of the best methods for converting a string to an integer in order to apply a hash
function is to add up the integer equivalents of each of the letters in the key:
True False

Secondary clustering refers to a clash occurring in the second or subsequent locations
in which we try to place an element in a hash table: True False

With a good hashing function and low load factor, the complexity of inserting an
element in a hash table with n elements should be
(2) O(1) (b) Ologn) (c) O(n)

With a bad hashing function and linear probing for resolving hash clashes, the
complexity of inserting an element in a hash table with n elements could be as bad as:

(@) O(1) (b)O(logn) () O(m) (d) O(n?) (e) O2")

. For each of the following techniques for handling hash collisions, determine whether
that technique has problems with each of primary and secondary clustering. Wrote
"OK" in the appropriate box if clustering is not a problem with that technique, "Bad"
if clustering is a major problem and "Mod" if it is a moderate problem.

Technique Primary Secondary
linear probing

double hashing

external chaining

. The HashTable classes in java.util and in the structures library have a provision that if
the load factor in the table becomes too high, a new table with twice the capacity is
created (similar to the way Vectors behave). Would it be a good idea to simply copy
over elements from the old table into corresponding positions of the new table? Why
or why not?

4. Short answers

a. What is the main advantage of using a splay tree over a general binary search tree?

b. What is the advantage of using the array representation of trees over the usual linked
representation when performing a heapsort?

c. Explain briefly why we have usually preferred to use interfaces over classes for the
types of variables.

d. In writing programs with threads, we normally execute sleep(PAUSE_TIME)
method to get the object to pause for PAUSE_TIME milliseconds before continuing.
Alternatively, we could write a while loop as follows to pause:

int startTime = System.currentTimeMillis();
while (System.currentTimeMillis() < startTime + PAUSE_TIME) {}

The program would continue executing the while loop until PAUSE_TIME
milliseconds have passed. What is the most important reason to prefer using the
sleep command over this while loop? (Hint: the reason has nothing to do with
accuracy of the delay time.)

e. Does it ever make sense to have a class with exactly one method labeled
synchronized? Why or why not?

f. We designed classes for expression trees with and without the Visitor pattern. In the
original version (without visitors), each type of expression class contained method to
evaluate the tree and print it out. In the version using the Visitor pattern, each class
simply contained a process method, while there were separate visitor classes for
evaluating and printing out the tree. Please discuss briefly the advantages and
disadvantages of each of these two designs, especially with regard to extensibility
(e.g., adding new kinds of expressions or operations).

5. This question has to do with algorithms used in the adjacency list and adjacency
matrix implementations of undirected graphs. Recall that in the adjacency matrix
representation of graphs, the implementation keeps track of a free list of rows and
columns of the matrix not currently in use.

For each of the following give a very short description of the algorithm as well as its
time complexity. In computing the complexity you may assume that the graph has n
vertices and each vertex has at most d edges connected to it.

To give you an example of the kind of answer desired, here is a sample.

Sample Question: Add a vertex to a graph in the adjacency list implementation.
Answer: Insert an association consisting of the vertex label and an empty list into the
dictionary (hash table) instance variable holding vertices. O(1)

Given labels labl and lab2 of vertices in the graph, add a new edge from labl to lab2
in the adjacency matrix implementation. (If the edge is already there, replace it by
the new one, but do not allow two edges with the same vertices.)

Given the labels lab1 and lab2 of nodes in the graph, add a new edge from labl1 to
lab2 in the adjacency list implementation. (If the edge is already there, replace it by
the new one, but do not allow two edges with the same vertices.)

Delete a vertex in the adjacency matrix representation (don't forget to get rid of all
edges).

Delete a vertex in the adjacency list representation (don't forget to get rid of all
edges).

6. Suppose you are given n lists, each of which is of size n and each of which is sorted
in increasing order. Thus there are a total of n2 elements in the lists. Consider the
following two methods for merging the lists into one sorted list L:

I) Ateach step, examine the smallest element from each list; take the smallest of all of
those elements, remove it from its list and add it at the end of list L. Repeat until all
lists are empty.

II) Merge the lists in pairs, obtaining n/2 lists of size 2n. Repeat, obtaining n/4 lists of
size 4n. Repeat as necessary until 1 list remains.

Each of these methods takes more than O(n2) time (which isn't surprising given that

there are a total of n? elements to be merged). Determine the time complexity of
each algorithm and explain your results. (Recall that a list of size k and a list of size
m may be merged in O(k+m) time.)

7. An organization that possesses a small computer wants to maintain records on its
members. Further, it wants to have very fast access when searching on each of two
different keys: by name and by social security number. Both of these attributes have
natural orderings. We wish to be able to search for elements via each kind of key.
Assume that a search by name is most common and must be done as quickly as
possible (O(1) is ideal) whereas the search by social security number is less common
and so may be somewhat slower than the other (O(log n) is desirable). Insertions and
deletions are common. Requests for lists of members ordered by social security
number are common (the IRS is auditing your membership), while lists ordered by
name are relatively infrequent. Unfortunately, the computer does not have in memory
sufficient space to hold two copies of all of the records if, for example, the
organization tried to maintain two separate arrays of records, each one sorted on a
different key. (The problem here is that each record is itself quite large, requiring
over 100 times as much memory as the key alone would.)

Suggest how the records might be organized with no redundant copies of information
(with the possible exception of the keys). Suggest a substantially different method for
each of the two keys and discuss the time (in "big O" notation) to search for an
element in each key. Also indicate the amount of time necessary to make insertions
and deletions, as well as the time necessary to list the elements by social security
number. Your grade on this question will depend on how fast the operations will be
performed, and how little space is needed. You may draw pictures if necessary to
illustrate your answer.

