
Compression
Due Sunday, October 1, 2017

Assignment 4
CSC 062: Fall, 2017

Objectives

For this assignment, you will:

• Gain more experience using JUnit.

• Practice implementing and using a doubly linked list data structure.

• Gain experience designing and implementing a non-trivial algorithm.

Compression

Sometimes we need to store massive amounts of information about an object. A good example is storing
graphic images. To save space on disks and in transmission of information across the internet, researchers
have designed algorithms to compress data. In this assignment you will learn one of these compression
techniques.

A graphic image can be represented by a two dimensional array of information about the colors of various
picture elements (or pixels). At high resolution the image may be composed of 1000 rows and 1000 columns
of information, leading to the need to store information on 1,000,000 pixels per image. Needless to say this
creates serious problems for storing and transmitting these images. However most images tend to have many
contiguous groups of pixels, each of which are the same color. We can take advantage of this by trying to
encode information about the entire block in a relatively efficient manner.

The basic idea of our encoding will be to represent a block of pixels with the same color by simply
recording the first place where we encounter the new color and only recording information when we see a
new color. For instance suppose we have the following table of information (where we will imagine each
number represents a color):

2 2 2 3 3
2 3 3 3 3
3 1 1 1 3

If we imagine tracing through the table from left to right starting with the top row and going through
successive rows then we notice that we only need to record the following entries:

2 - - 3 -
2 3 - - -
- 1 - - 3

Rather than recording this in a two-dimensional table, it will now generally be more efficient to keep this
information in a linear list of Assocations where it is assumed we sweep across an entire row before going
on to the next:

(0, 0)→ 2 (0, 3)→ 3 (1, 0)→ 2 (1, 1)→ 3 (2, 1)→ 1 (2, 4)→ 3

This assignment asks you to design a class which will represent one of these compressed tables. A working
demo of this program can be found at
http://www.cs.pomona.edu/classes/cs062/assignments/demos/CompressedGrid/CompressedGrid.html

It will only run if you enable Java for this page on your browser.
We have provided you with a lot of code here, but you will find that much of the code you must write is

quite tricky. This project will require you to be very careful in developing the code for the methods. Look
carefully at the provided code and design your methods very carefully. In particular, be sure to test your
code carefully as it is developed as you will likely make several logical errors if you are not extremely careful.

This is your most complex program yet. You should start early on this assignment and make a very
complete design for your program before you ever sit down at the computer to program.

1



Classes

CurDoublyLinkedList class

Class CurDoublyLinkedList extends DoublyLinkedList from Bailey’s structure5 package. (You can find
the code for DoublyLinkedList under the Bailey Structure5 source code link on the Documentation and
Handouts page of the course website). Think carefully about what it means for one class to extend another.

The CurDoublyLinkedList class should support all of the old methods of the List interface. In addition
the new class should support the following methods:

• first(), last(),

• next(), back(),

• isOffRight(), isOffLeft(),

• currentValue(),

• addAfterCurrent(Object value), and deleteCurrent().

Specifications for these methods can be found in the startup code available on-line. You should start this
assignment by finishing the CurDoublyLinkedList class.

TestCurDoublyLinkedList class

This is a JUnit test class for the CurDoublyLinkedList class. There are already a few tests provided for you.
You must finish this class by adding at least one test for each method in the CurDoublyLinkedList class.
The more thorough your tests, the easier time you will have when you implement the CompressedTable

class. Be sure to test all of the edge (special) cases.

CompressedTable class

The CompressedTable class represents the compressed table. CompressedTable implements the TwoDTable

interface. It has an instance variable tableInfo of type:

CurDoublyLinkedList<Association<RowOrderedPosn, ValueType>>

The instance variable tableInfo is a CurDoublyLinkedList where each node in the list is an Association

whose key is an entry in the table of type RowOrderedPosnand whose value is of type ValueType. Feel free
to add other instance variables to this class.

You must fill in the constructor for the CompressedTable class as well as the two methods:

• updateInfo(row,col,newInfo)

• getInfo(row,col)

The updateInfo method of CompressedTable is probably the trickiest code to write. Here is a brief
outline of the logic.

1. We have provided you with code to find the node of the list that encodes the position being updated.
Of course not every position is in the list, only those representing changes to the array. If the node is
not there, the method returns the node before the given position in the list. The class RowOrderedPosn
(see the startup code) not only encodes a position, but, because it also contains information on the
number of rows and columns in the table, can determine if one position would come before or after
another.

2



2. If the new information in the table is the same as that in the node found in step 1, then nothing needs
to be done. Otherwise determine if the node represents exactly the position being updated.

If it is the same, update the value of the node, otherwise add a new node representing the new position.

3. If you are not careful you may accidentally change several positions in the table to the new value. Avoid
this by considering putting in a new node representing the position immediately after the position with
the new value. (Why? Draw pictures of the list so you can see what is happening!)

4. If there is already a node with this successor position then nothing needs to be done. Otherwise add a
new node with the successor position and the original value. (Do you see why this is necessary? Look
at the demo program to see why.)

Try to draw examples of this logic with several sample lists so that you can understand how it works!

RowOrderedPosn class

The RowOrderedPosn class represents a single entry in a row-ordered table. The constructor takes four
parameters: the row of the entry in the table, the column of the entry in the table, the total number of rows
in the table, and the total number of cols in the table. Thus,

new RowOrderedPosn(0, 0, 5, 3)

represents the entry at location (0, 0) i.e. the upper-left corner in a table with 5 rows and 3 columns. This
class also contains methods to return the next position after a given one and to compare two positions in a
table. This class is already implemented for you.

DrawingPanel class

This class is responsible for displaying the two-dimensional grid of colored rectangles. It is also responsible
for any mouse actions performed on the two-dimensional grid. This class is already implemented for you.

GridTest class

This class creates an applet that lets the user manipulate a grid of rectangles that form an image. The
user interacts with the application by clicking on a color button to set the current color and then click-
ing on rectangles in the grid to change the colors of individual rectangles. Along with the color but-
tons there is a button that will display the results of sending the toString method to the object of type
CompressedTable to show the current state of the representation. This can help you as you attempt to
debug your CurDoublyLinkedList and CompressedTable classes. This class is already implemented for
you.

TwoDTable interface

This interface represents a two-dimensional table.

Getting Started

1. Read through this writeup completely before you start. Then, get a sheet of paper and pencil and
draw pictures to help you understand how the doubly linked list works and how the compressed table
should work. These examples can also help you form your unit tests. Don’t forget to think about
special cases.

2. After reading the writeup and going through examples, start working on the design of the program.
How will you keep track of whether current is off the right or left side of the list? Look out for methods
that you can implement in terms of the other existing methods in either the CurDoublyLinkedList or
DoublyLinkedList class.

3



3. Create a new project in Eclipse and copying the starter files from /common/cs/cs062/assignments/assignment04/

into the src directory of your newly created project.

4. Try to interweave testing your code and writing your code. It is much better to write a method and
then stop and test it instead of writing all of the code for a class and only afterwards testing. Even
better is to write all of your test in JUnit before you write the code and then slowly turn the red to
green!

5. To ensure compatibility with the auto-grader, update the build path of the project and include
AutograderCompTest.jar by selecting the menu Project → Properties → Java Build Path → Li-
braries → Add JARs. Initialize an instance of AutograderCompTest in a main method and call
testCurDoublyLinkedList() or testCompressedTable(). Note that this test class only checks com-
patibility, not correctness.

Grading

You will be graded based on the following criteria:

criterion points
No change if new color same as current 1
Change color of position already in list 2
Change color of position not in list 2
Correctly adds second node to list when needed 2
CurDoublyLinkedList 4
JUnit tests for all methods in CurDoublyLinkedList 2
General correctness 2
Appropriate comments (including JavaDoc) 2
Style and formatting 2
Submitted correctly 1
extra credit - design 2
extra credit - efficiency 2

NOTE: Code that does not compile will not be accepted! Make sure that your code compiles before
submitting it.

Extra credit

Design

This is your most complex program yet. As a result you should make a very complete design for your pro-
gram before you sit down at a computer to program. If you email your design for the methods removeFirst,
removeLast, and removeCurrent of CurDoublyLinkedList and updateInfo of CompressedTable to
kim@cs.pomona.edu by Thursday at midnight, we will take a look at them and provide you with feed-
back on them. (Keep in mind that methods in CurDoublyLinkedList can make calls to super to access
methods in DoublyLinkedList and then add your own behavior.)

While these should not be written in Java, you should include the complete logic of the methods. Re-
member that you must draw pictures and look at all possible special cases in order to get these right. You
can get up to two points extra credit for submitting these via e-mail by the deadline. Just paste your design
into the email message.

Space Efficiency

As you add more information to the table, you will notice that the table is no longer as efficient in space,
because several consecutive entries may have the same values. Make the representation more efficient by

4



dropping later values if they can be subsumed by earlier ones.
For example, the list

(0, 0)→ 2 (0, 3)→ 3 (1, 0)→ 3 (1, 1)→ 3 (2, 1)→ 1 (2, 4)→ 3

can be replaced by the much simpler list:

(0, 0)→ 2 (0, 3)→ 3 (2, 1)→ 1 (2, 4)→ 3

For extra credit, modify the updateInfo method of CompressedTable to eliminate consecutive items
with the same value. The amount of extra credit received will be proportional to the efficiency of your
algorithm. Ideally this optimization will only take O(1) time each time something is inserted in the table.

Submitting Your Work
Export your project from Eclipse and submit it as usual using the instructions at http://www.cs.pomona.
edu/classes/cs062/handouts/eclipse_submission.pdf. Please follow these very carefully. If you do not,
your program will NOT be submitted correctly and you will not receive credit for your assignment (and you
and we will all be very sad!). Dont forget to fill out the asg04.json file! In particular, dont forget to set the
“ec” field to true if you did extra credit (beyond the design).

5


