Lecture 9: Merge Sort & Correctness

CS 62 Fall 2017 Kim Bruce & Alexandra Papoutsaki

Assignment 3

- On-disk sorting: What to do when more data than can fit in memory of computer?
 - Break into chunks that will fit in memory, sort chunks, and copy into new files: o.tempfile, 1.tempfile, ...
 - Keep ArrayList of files
 - Merge files together until one big sorted file.
 - Note can't keep file open as both read and write!

Assignment 3

- Read info on File I/O in Java and file systems in appendix to assignment. See on-line Streams cheat sheet!
- Lab 3: More complexity/timing (sorting)

Review: Selection Sort

- Find largest element, put it last, sort the rest!
- More carefully: To sort array[0..n-1]:
 - if n > 0:
 - Swap largest element with array[n-1]
 - Recursively sort array[0..n-2]
- Complexity: O(n²)
- Correctness

Merge Sort

- Example of Divide & Conquer algorithm:
 - Divide array in half
 - Sort each half
 - Merge halves together into completely sorted array
 - See code on line

Correctness

- Course-of-values induction:
 - P(n): If high low = n then sortHelper(data,low,high) will result in data[low .. high] being correctly sorted
 - For simplicity, assume merge is correct
 - Assume P(k) for all k < n, show P(n).
 - If n = 0 or I then (correctly) do nothing. Assume n > I
 - Call sortHelper(data, low, mid) and sortHelper(data, mid+1, high)
 - where mid = low + (high low)/2.
 - Hence mid-low < n, high-(mid+1) < n. Convince yourself!!
 - By induction data[low.mid] and data[mid+1 .. high] now sorted.
 - call merge(data, low, mid, high) and, by assumption on merge, data[low .. high] now sorted! Thus P(n) true.

Complexity

- Claim mergeSort is O(n log n)
 - where log is base 2
- Intuitive proof
- Careful proof by induction (assuming n is a power of 2, e.g. n = 2^m) on board.
- Note: merge of two lists of combined size n takes ≤ n -1 compares.

Complexity

- P(m): if data has 2^m elements then mergesort makes < m * 2^m comparisons of elements.
- Assume P(k) for all $k < 2^m$. Prove P(m)
 - P(o), P(I) clear
 - Show P(m),
 - Sort first half, second half, and then merge
 - size $2^m/2$ = $2^{m\cdot r} < 2^m,$ so by induction, each takes $<(m\cdot r)$ * $2^{m\cdot r}$ comparisons
 - Therefore comparisons < (m-I) * $2^{m-I} + (m-I) * 2^{m-I} + (2^m I)$

When we write $\log n$ in CS, we mean $\log_2 n$

Finish Algebra

```
Compares < (m-i) * 2^{m-i} + (m-i) * 2^{m-i} + (2^{m} - i)
```

= $(2m) * 2^{m-1} - I$ = $m * 2^{m} - I$ < $m * 2^{m}$

Thus P(m) true. Note if $n = 2^m$ then merge sort takes (log n) * n comparisons because m = log n. Easier to write as n * (log n)

Binary Search

• If time:

- Search for element in sorted list
- Linear search is O(?)
- Binary search is O(?)