
Lecture 9: Merge Sort &
Correctness

CS 62
Fall 2017

Kim Bruce & Alexandra Papoutsaki

Assignment 3

• On-disk sorting: What to do when more data
than can fit in memory of computer?
• Break into chunks that will fit in memory, sort chunks,

and copy into new files: 0.tempfile, 1.tempfile, …
• Keep ArrayList of files

• Merge files together until one big sorted file.

• Note can’t keep file open as both read and write!

Assignment 3

• Read info on File I/O in Java and file systems in
appendix to assignment. See on-line Streams
cheat sheet!

• Lab 3: More complexity/timing (sorting)

Review: Selection Sort

• Find largest element, put it last, sort the rest!

• More carefully: To sort array[0..n-1]:
• if n > 0:

• Swap largest element with array[n-1]
• Recursively sort array[0..n-2]

• Complexity: O(n2)

• Correctness

Merge Sort

• Example of Divide & Conquer algorithm:
• Divide array in half

• Sort each half

• Merge halves together into completely sorted array

• See code on line

Correctness
• Course-of-values induction:

• P(n): If high - low = n then sortHelper(data,low,high) will
result in data[low .. high] being correctly sorted

• For simplicity, assume merge is correct

• Assume P(k) for all k < n, show P(n).
• If n = 0 or 1 then (correctly) do nothing. Assume n > 1

• Call sortHelper(data, low, mid) and sortHelper(data, mid+1, high)

• where mid = low + (high - low)/2.

• Hence mid-low < n, high-(mid+1) < n. Convince yourself !!
• By induction data[low..mid] and data[mid+1 .. high] now sorted.

• call merge(data, low, mid, high) and, by assumption on merge,
data[low .. high] now sorted! Thus P(n) true.

Complexity

• Claim mergeSort is O(n log n)
• where log is base 2

• Intuitive proof

• Careful proof by induction (assuming n is a
power of 2, e.g. n = 2m) on board.

• Note: merge of two lists of combined size n
takes ≤ n -1 compares.

When we write log n in CS, we mean log2 n

Complexity

• P(m): if data has 2m elements then mergesort
makes < m * 2m comparisons of elements.

• Assume P(k) for all k < 2m. Prove P(m)

• P(0), P(1) clear
• Show P(m),

• Sort first half, second half, and then merge
• size 2m / 2 = 2m-1 < 2m, so by induction, each takes < (m-1) * 2m-1

comparisons

• Therefore comparisons < (m-1) * 2m-1 + (m-1) * 2m-1 + (2m - 1)

Finish Algebra

Compares < (m-1) * 2m-1 + (m-1) * 2m-1 + (2m - 1)
 = (2m) * 2m-1 - 1
 = m * 2m - 1
 < m * 2m

Thus P(m) true. Note if n = 2m then merge sort
takes (log n) * n comparisons because m = log n.
Easier to write as n * (log n)

Binary Search

• If time:
• Search for element in sorted list

• Linear search is O(?)

• Binary search is O(?)

