Lecture 9: Merge Sort \& Correctness

CS 62
Fall 2017
Kim Bruce \& Alexandra Papoutsaki

Assignment 3

- Read info on File I/O in Java and file systems in appendix to assignment. See on-line Streams cheat sheet!
- Lab 3: More complexity/timing (sorting)

Assignment 3

- On-disk sorting: What to do when more data than can fit in memory of computer?
- Break into chunks that will fit in memory, sort chunks, and copy into new files: o.tempfile, I.tempfile, ...
- Keep ArrayList of files
- Merge files together until one big sorted file.
- Note can't keep file open as both read and write!

Review: Selection Sort

- Find largest element, put it last, sort the rest!
- More carefully: To sort array[o..n-I]:
- if $\mathrm{n}>\mathrm{o}$:
- Swap largest element with array[n-r]
- Recursively sort array[o..n-2]
- Complexity: $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Correctness

Merge Sort

- Example of Divide \& Conquer algorithm:
- Divide array in half
- Sort each half
- Merge halves together into completely sorted array
- See code on line

Correctness

- Course-of-values induction:
- $\mathrm{P}(\mathrm{n})$: If high - low $=\mathrm{n}$ then sortHelper(data,low,high) will result in data[low .. high] being correctly sorted
- For simplicity, assume merge is correct
- Assume $\mathrm{P}(\mathrm{k})$ for all $\mathrm{k}<\mathrm{n}$, show $\mathrm{P}(\mathrm{n})$.
- If $\mathrm{n}=\mathrm{o}$ or I then (correctly) do nothing. Assume $\mathrm{n}>\mathrm{I}$
- Call sortHelper(data, low, mid) and sortHelper(data, mid+1, high)
- where mid $=$ low $+($ high - low $) / 2$.
- Hence mid-low < n, high- $(\mathrm{mid}+\mathrm{I})$ < n . Convince yourself!!
- By induction data[low.mid] and data[mid+1 .. high] now sorted.
- call merge(data, low, mid, high) and, by assumption on merge, data[low .. high] now sorted! Thus P(n) true.

Complexity

- Claim mergeSort is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
- where \log is base 2
- Intuitive proof
- Careful proof by induction (assuming n is a power of 2 , e.g. $n=2^{\mathrm{m}}$) on board.
- Note: merge of two lists of combined size n takes $\leq \mathrm{n}-\mathrm{I}$ compares.

Complexity

- $\mathrm{P}(\mathrm{m})$: if data has 2^{m} elements then mergesort makes $<\mathrm{m} * 2^{\mathrm{m}}$ comparisons of elements.
- Assume $\mathrm{P}(\mathrm{k})$ for all $\mathrm{k}<2^{\mathrm{m}}$. Prove $\mathrm{P}(\mathrm{m})$
- $\mathrm{P}(\mathrm{o}), \mathrm{P}(\mathrm{r})$ clear
- Show P(m),
- Sort first half, second half, and then merge
- size $2^{\mathrm{m}} / 2=2^{\mathrm{m}-1}<2^{\mathrm{m}}$, so by induction, each takes $<(\mathrm{m}-\mathrm{I}) * 2^{\mathrm{m}-\mathrm{I}}$ comparisons
- Therefore comparisons $<(\mathrm{m}-\mathrm{I}) * 2^{\mathrm{m}-\mathrm{I}}+(\mathrm{m}-\mathrm{I}) * 2^{\mathrm{m}-\mathrm{I}}+\left(2^{\mathrm{m}}-\mathrm{I}\right)$

Finish Algebra

```
Compares \(<(\mathrm{m}-\mathrm{I}) * 2^{\mathrm{m}-\mathrm{I}}+(\mathrm{m}-\mathrm{I}) * 2^{\mathrm{m}-\mathrm{I}}+\left(2^{\mathrm{m}}-\mathrm{I}\right)\)
\(=(2 \mathrm{~m}) * 2^{\mathrm{m}-\mathrm{I}}-\mathrm{I}\)
\(=\mathrm{m} * 2^{\mathrm{m}}-\mathrm{I}\)
\(<\mathrm{m}^{*} 2^{\mathrm{m}}\)
```

Thus $\mathrm{P}(\mathrm{m})$ true. Note if $\mathrm{n}=2^{\mathrm{m}}$ then merge sort takes $(\log n) * n$ comparisons because $m=\log n$. Easier to write as $n *(\log n)$

Binary Search

- If time:
- Search for element in sorted list
- Linear search is $\mathrm{O}(?)$
- Binary search is $\mathrm{O}(?)$

