
CS 62
Fall 2017

Kim Bruce & Alexandra Papoutsaki

1

Lecture 8: Induction and
Sorting

Reading

• Chapter 5.2 covers recursion/induction
• Chapter 5.3 has some design guidelines
• Chapter 6 covers sorting

2

Induction

• Mathematical technique for proving:
• Mathematical statements over natural numbers
• Complexity (big-o) of algorithm
• The correctness of algorithms

• Intimately related to recursion
• Inductive proofs reference themselves

3

Induction steps

• Let 𝑃(𝑛)	be some proposition

• To prove 𝑃(𝑛) is true for all 𝑛 ≥ 0
• (Step 1) Base case: Prove 𝑃(0)
• (Step 2) Assume 𝑃(𝑘) is true for 𝑘 ≥ 0
• (Step 3) Use this assumption to prove 𝑃 𝑘 + 1

4

Practice Examples

• Prove 1 + 	2	 +	…	+ 	𝑛	 = 	 [𝑛(𝑛 + 1)]/2 for all 𝑛	 ≥ 1

• Prove 20	 + 	21	 + 	…+ 	2𝑛		 = 	 2123	– 	1	for all 𝑛	 ≥ 	0

• Prove 2𝑛	 < 	𝑛!	for all 𝑛		 ≥ 	4

5

Selection Sort

6

1. Take the smallest element
2. Swap it with the first element
3. Repeat with the rest of the array

14 30 10 26 34 18 5

1430 10 26 34 185

Selection Sort

7

14 30 10 26 34 18 5

1430 10 26 34 185

143010 26 34 185

14 3010 26 34 185

14 3010 2634185

Selection Sort (helper)

/*
* @param array array of integers
* @param endIndex valid index into array
* @return index of largest value in array[0...endIndex]
*/
private int indexofLargest[] array, int endIndex) {
int largestIndex = 0;
for (int i = largestIndex + 1; i < endIndex; i++) {
if (array[i] > array[largestIndex]) {
largestIndex = i;

}
}
return largestIndex ;

}

8

Selection Sort
/**
* @param array array of integers
* @param endIndex a valid index into array

 */
private static void selectionSortRecursive(int[] array, int endIndex) {

if(endIndex > 0) {

// find largest element in rest of array
int largest= indexOfLargest(array, endIndex);

// move smallest element to position endIndex
swap(array, largest, endIndex);

// recurse on everything to the left of startIndex
selectionSortRecursive(array, endIndex-1);

}
} 9

Correctness of Selection Sort

For all 𝑛	 ≥ 	0	where array.length > 	𝑛, after running
selectionSort(array,n), array[0…n] is sorted in non-descending
order.

𝑃(𝑛): After running selectionSort(array,n), array[0...n] is sorted
in non-descending order.

Base case: prove 𝑃(0)
selectionSort(array,0) does nothing, but array[0…0] has only one
element and hence is in order.

10

Selection Sort – Induction

• Suppose 𝑃(𝑘) is true. i.e. if we call selectionSort(array,k),
then array[0..k] will be in (non-descending) order

• Prove 𝑃(𝑘 + 1):
• Call of selectionSort(array,k+1) starts by finding index of largest

element in array[0…k+1] and swaps with element in array[k+1].

• By induction assumption, recursive call of selectionSort(array,k)
leaves array[0...k] in order, and array[k+1] is larger, so array[0...k+1]
is in order. ✔

11

Analysis

• Count number of comparisons of elts from array
• All comparisons are in “indexOfLargest(array,n)”

• At most n comparisons.

• Prove # of comparisons in selectionSort(array,n) is
1 + 2 + ... + n.
• Base case: n = 0: No comparisons
• Assume true for selectionSort(array,k-1): 1 + 2 + ... + (k-1)
• Show for k elements:

• indexOfLargest(array,k) takes k comparisons,
• swap takes none.
• By induction selectionSort(array,k-1) takes 1 + 2 +...+(k-1).
• Therefore total: 1 + 2 + ... + (k-1) + k

12

Complexity of Selection Sort

• If array has length 𝑛 then selectionSort(array,0)
takes time 𝑛(𝑛 − 1)/2, so 𝑂 𝑛2

• Iterative version of selection sort is in text.

13

Strong induction

• Sometimes need to assume more than just the previous
case, so instead
• Prove 𝑃(0)
• Assumption holds for 𝑃(𝑗) for every j = 0, . . , 𝑘 in order to prove
𝑃(𝑘 + 1).

14

FastPower

• 𝑓𝑎𝑠𝑡𝑃𝑜𝑤𝑒𝑟(𝑥, 𝑛)	algorithm to calculate 𝑥𝑛:
• if 𝑛	 == 	0	then return 1
• if 𝑛 is even, return 𝑓𝑎𝑠𝑡𝑃𝑜𝑤𝑒𝑟(𝑥I, 𝑛/2)
• if 𝑛	is odd, return 𝑥 ∗ 𝑓𝑎𝑠𝑡𝑃𝑜𝑤𝑒𝑟 𝑥, 𝑛 − 1

15

FastPower - Proof by induction on 𝑛

• Base case: 𝑛	 = 0
• 𝑥K = 1 and 𝑓𝑎𝑠𝑡𝑃𝑜𝑤𝑒𝑟 𝑥, 0 =	1

• Assume 𝑓𝑎𝑠𝑡𝑃𝑜𝑤𝑒𝑟(𝑥, 𝑗) is	𝑥L for all j	≤ 𝑘.
• Show 𝑓𝑎𝑠𝑡𝑃𝑜𝑤𝑒𝑟(𝑥, 𝑘 + 1)	is 𝑥N23

• Case: 𝑘 + 1 is even
• 𝑓𝑎𝑠𝑡𝑃𝑜𝑤𝑒𝑟 𝑥, 𝑘 + 1 = 𝑓𝑎𝑠𝑡𝑃𝑜𝑤𝑒𝑟(𝑥I, (𝑘 + 1)/2)= (𝑥I)(N23)/I =

	𝑥N23

• Case: 𝑘 + 1 is odd
• 𝑓𝑎𝑠𝑡𝑃𝑜𝑤𝑒𝑟 𝑥, 𝑘 + 1 = 𝑥 ∗ 𝑓𝑎𝑠𝑡𝑃𝑜𝑤𝑒𝑟 𝑥, 𝑘	 = 𝑥 ∗ 	𝑥N = 	 𝑥N23

16

