
9/12/17

1

CS 62
Fall 2017

Kim Bruce & Alexandra Papoutsaki

1

Lecture 7: Analysis of
Algorithms

Assignment

• WordStream: Reads text word by word
• Use nextToken() but make sure hasMoreTokens()

• Pair: of two elements
• StringPair
• Pair of Strings. Extends Pair

• Assume two associations <k,v>, <k’,v’>.
• the equals method will return true iff the k and k’ are equal

• List
• indexOf(Object o) finds index of o in a list
• Return -1 if on not in list

2

FreqList

• list of associations holding words and their frequencies
• Instance variable List<Association<String, Integer>> flist
• Start with toString()
• Continue with add()
• What to check when adding?

3

In general…

• Work on paper first!
• More demanding than assignment 1. Start early!
• Come to office hours
• Don’t forget Friday’s quiz

4

9/12/17

2

Order of Magnitude

• Definition: We say that 𝑔(𝑛)	is 𝑂(𝑓(𝑛))	if there exist two
constants 𝐶 and	𝑘	such that

𝑔 𝑛 <= 	𝐶	 𝑓 𝑛 , 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑛	 > 	𝑘.
• Used to measure time and space complexity of algorithms

on data structures of size n.
• Examples:
• 2𝑛 + 1 is 𝑂(𝑛)
• 𝑛3 − 𝑛2 + 83	is 𝑂(𝑛^3)
• 2𝑛 + 𝑛2	is 𝑂(2^𝑛)

• Most common are:
• 𝑂(1)	- for any constant
• 𝑂(log	𝑛), 𝑂(𝑛), 𝑂(𝑛	log	𝑛), 𝑂(𝑛2), … , 𝑂(2𝑛)

5

Complexity

6

Complexity

7

84 Design Fundamentals

2 2

log()nnn!

3

sqrt()

1

0
0 1 2 3 4 5

4

5

n

n n

nlog()

2
n

Figure 5.2 Near-origin details of common curves. Compare with Figure 5.3.

2

2

n!

log()nn

sqrt()n
log()n

n

60

40

20

80

100

0
0 20 40 60 80 100

n

n

Figure 5.3 Long-range trends of common curves. Compare with Figure 5.2.

Comparing Orders of Magnitude

• Suppose have ops w/complexities given & problem of size n
taking time t.

• How long if increase size of problem?

8

Problem Size: 10 n 100n 1000n

O(log n) 3+t 7 + t 10+ t

O(n) 10 t 100 t 1000 t

O(n log n) > 10 t > 100 t > 1000 t

O(n2) 100 t 10,000 t 1,000,000 t

O(2n) ~ t10 ~ t100 ~ t1000

9/12/17

3

Rule of thumb

9

Adding to ArrayList

• Suppose n elements in ArrayList and add 1.
• If space:
• Add to end is 𝑂(1)	
• Add to beginning is 𝑂 𝑛

• If not space:
• What is cost of ensureCapacity?
• 𝑂(𝑛)	because n elements in array

10

EnsureCapacity

• What if only increase in size by 1 each time?
• Adding n elements one at a time to end

• Total cost of copying over arrays: 1 + 2 + 3 +⋯+ (𝑛 − 1) 	= 	𝑛(𝑛 − 1)/2
• Total cost of 𝑂(𝑛2)

• Average cost of each is 𝑂(𝑛)

• What if double in size each time?
• Suppose add 𝑛	 = 	2𝑚	new elts to end

• Total cost of copying over arrays: 1 + 2 + 4 +⋯+ 𝑛/2	 = 	𝑛 − 1, 𝑂(𝑛)
• Average cost of 𝑂(1),	but “lumpy”

11

ArrayList Operations

• Worst case:
• 𝑂(1):	size, isEmpty, get, set
• 𝑂(𝑛):	remove, add

• Add to end is on average 𝑂(1)

12

