
Lecture 6: ArrayList
implementation & Complexity

CS 62
Fall 2017

Kim Bruce & Alexandra Papoutsaki

Lab This Week

• Timing ArrayList operations
• Encourage working in pairs

• Stopwatch class: start(), stop(), getTime(), reset()

• Java has Just-In-Time compiler
• Must “warm-up” before you get accurate timing

• What can mess up timing?

• Uses Vector from Bailey rather than ArrayList
from Java libraries because can change way it
increases in size.

Programming Assignment
This Week

• Weak AI/Natural Language Processing:
• Generate text by building frequency lists based on pairs

of words. ArrayList of Associations of String (words) and
Integer (count of that word).

PostIt App

• Generated javadoc for fun

• See how ArrayList used in methods for
PostItApplication
• findWindowInList, moveToTop, removeWindow

• Used in mouse-event-handling methods

ArrayList

• Not using Bailey implementation
• see code on-line for implementation by Tomassia &

Goodrich

• Standard Java libraries have lots of extra
methods not in our implementation:
• Many involve working on other collections

• irrelevant for us at this point.

• addAll, clear, contains, containsAll, listIterator,
removeAll, replaceAll, retainAll, sort, spliterator, sublist,
toArray

Back to ArrayList

• Interface is IndexList<E>

• See ArrayIndexList<E>
• Similar to ArrayList

• Instance variables:
• elts: array instance variable,
• eltsFilled: number of slots filled.

• Creating new ArrayList is weird
• Can’t construct array of variable type!

• Create array of Object, but coerce to believe array of E.

ArrayList Implementation

• Some operations very cheap:
• size, isEmpty, get, set take constant time (no search)

• Others more expensive

Adding Elts in Slot i

• Easy if there is space:
• At end, just add it

• If before end, must move all elements at i and beyond to
right before inserting

• Delete similar

• What if run out of space
• Create new array twice as big and copy old elements over

before adding.

• How expensive is this?

Complexity of Operations
• Count number of compares and/or moves to

accomplish operation.

• Rather than keeping an exact count of
operations, use order of magnitude count of
complexity.

• Ignore differences which are constant
• e.g., treat n and n/2 as same order of magnitude.

• Same with 2 n2 and 1000 n2

Order of Magnitude

• Definition: We say that g(n) is O(f(n)) if there
exist two constants C and k such that  
|g(n)| <= C |f(n)| for all n > k.

• Examples: 2n+1, n3-n2+83, 2n+n2

• Used to measure time and space complexity of
algorithms on data structures of size n.

• Most common are
• O(1) - for any constant

• O(log n), O(n), O(n log n), O(n2), ..., O(2n)

Use simplest version in
O(...)

Complexity

84 Design Fundamentals

2 2

log()nnn!

3

sqrt()

1

0
0 1 2 3 4 5

4

5

n

n n

nlog()

2
n

Figure 5.2 Near-origin details of common curves. Compare with Figure 5.3.

2

2

n!

log()nn

sqrt()n
log()n

n

60

40

20

80

100

0
0 20 40 60 80 100

n

n

Figure 5.3 Long-range trends of common curves. Compare with Figure 5.2.

Comparing Orders of Magnitude
• Suppose have ops w/complexities given &

problem of size n taking time t.

• How long if increase size of problem?

Problem Size: 10 n 100n 1000n
O(log n) 3+t 7 + t 10+ t

O(n) 10 t 100 t 1000 t

O(n log n) > 10 t > 100 t > 1000 t

O(n2) 100 t 10,000 t 1,000,000 t

O(2n) ~ t10 ~ t100 ~ t1000

Complexity 2 Adding to ArrayList

• Suppose n elements in ArrayList and add 1.

• If space:
• Add to end is O(1)

• Add to beginning is O(n)

• If not space,
• What is cost of ensureCapacity?

• O(n) because n elements in array

EnsureCapacity

• What if only increase in size by 1 each time?
• Adding n elements one at a time to end

• Total cost of copying over arrays: 1+2+3+...+(n-1) = n(n-1)/2

• Total cost of O(n2)

• Average cost of each is O(n)

• What if double in size each time?
• Suppose add n = 2m new elts to end

• Total cost of copying over arrays: 1+2+4+...+n/2 = n-1, O(n)

• Average cost of O(1), but “lumpy”

ArrayList Ops

• Worst case
• O(1): size, isEmpty, get, set

• O(n): remove, add

• Add to end, on average O(1)

