
Lecture 41: Summary
CSCI 62
Fall, 2017

Kim Bruce & Alexandra Papoutsaki

Rest of Semester

• No quiz Friday!

• Review session Friday afternoon at 2 p.m.
(here)

• Final exam Monday from 9 a.m. until noon.
Please contact us if you have accommodations
requiring extra time.

• Finish design patterns!

Visitor Pattern
• Problem: want to implement multiple analyses on

the same kind of object data

- Spellchecking and Hyphenating Glyphs

- Generating code for and analyzing an Abstract Syntax
Tree (AST) in a compiler

• Flawed solution: implement each analysis as a
method in each object

- Follows idea objects are responsible for themselves

- But many analyses will occlude the objects' main code

- Result is classes hard to maintain

Visitor Pattern

• We define each analysis as a separate Visitor class

- Defines operations for each element of a structure

• A separate algorithm traverses the structure,
applying a given visitor

- But, like iterators, objects must reveal their
implementation to the visitor object

• Separates structure traversal code from operations
on the structure

- Observation: object structure rarely changes, but often
want to design new algorithms for processing

Visitor Pattern

• One class hierarchy for object structure

- AST in compiler

• One class hierarchy for each operation family, called
visitors

- One for typechecking, code generation, pretty printing in
compiler

Visitor Pattern Consequences

• Gathers related operations into one class

• Adding new analyses is easy

- New visitor for each one

- Easier than modifying the object structure

• Adding new concrete elements is difficult

- must add a new method to each concrete Visitor subclass

Visitor Traversal Choices

• Traversal in object structure (typical)

- Define operation that performs traversal while applying
visitor object to each component

• Traversal implemented in visitor itself

- E.g., perform processing at this node, then pass visitor to
children nodes.

• Traversal code replicated in each concrete visitor

- External Iterator

See ParserVisitor5

Designing with Patterns

• How do you know which patterns to use?

• What if you choose the wrong pattern?

- I.e. your code doesn't evolve the way you thought it
would.

• What if all your work to make things extensible via
patterns never pays off?

- I.e. your code doesn't change in the way you thought it
would.

• Choosing the right pattern implies prognostication

Designing with Patterns

• Some design patterns are immediately useful

- Observer, Decorator

• Some are not immediately useful, but you think they
might be

- You anticipate changing things later -- prognostication

• Recently popular philosophy: XP (now called agile)

- Design for your immediate needs

- When needs change, redesign your code to match

- Use extensive testing to validate frequent changes

Topics
• Object-oriented Programming & Design in

Java

• Encapsulation, information hiding for flexibility!

• Proofs by induction for correctness &
complexity (more in Discrete Math)

• Big-O complexity – performance

• Sorting & searching: selection, merge, heapsort,
binary search, tree & graph algos

• Java graphics, GUI programming

More Topics

• Basic Data Structures including alternate
implementations:

• Lists

• Stacks

• Queues

• Trees - including (balanced) binary search trees

• Maps & Dictionaries (including hash tables)

• Graphs, including sophisticated algorithms

• Understand trade-offs in selection of data structures

Topics in italics
covered since last

midterm

More Topics

• Parallelism & Concurrency

• OO Design

• Design Patterns

Place of CS 62

• Last core course with focus on teaching to
program.

• Though will learn other languages later.

• Further courses focus on core topics & applications

• Assume now comfortable in creating
medium sized programs

• There are courses, e.g. CS 121 Software Design &  
CS 181 Software Engineering, that focus on designing
large programs

Goals from Syllabus

• Good understanding of the object-oriented
design, coding, and debugging of programs
in Java.

• Good understanding of how one might
analyze programs for correctness and
efficiency

• Understand the trade-offs involved in
selections of different data structures and
algorithms to solve computational problems.

Choice of Language

• What is important?

• If programmer time: Use high-level garbage-
collected language like Java, C#, Python, ML,
Haskell, Scala, Javascript, etc.

• If execution time (and need access to low-level
details): Systems language like C, Objective C or
Swift, or C++.

• Students taking 105 (Systems) and graphics
will be learning C.

Final Exam

• Monday from 9 a.m. to noon.

• Roughly 7 to 10 questions (some w/many
parts)

• several will involve coding Java

• Lots of analysis of data structures, descriptions/
analysis of algorithms covered in class -- including
graphs!

• More emphasis on items since second midterm

• but cumulative!

Bruce Office Hours

• Today: 11 to noon & 1:30 to 3 p.m.

• Thursday, 1 to 2 p.m.

• Friday: review session at 2 p.m. (here?)

• Final Grade Calculation:

• 15% each midterm plus 25% final

• 35% programming assignments

• 10% labs + quizes

Questions?

