
Lecture 40:
Design Patterns

CS 62
Fall 2017

Kim Bruce & Alexandra Papoutsaki

What is a Pattern?

"Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in such a
way that you can use this solution a million times over, without ever doing it the
same way twice"
"Each pattern is a three-part rule, which expresses a relation between a certain
context, a problem, and a solution"

Christopher Alexander on architecture patterns
"Patterns are not a complete design method; they capture important practices of
existing methods and practices uncodified by conventional methods"
James Coplien

What are design patterns?

• Design pattern is a problem & solution in context

• Design patterns capture software architectures and
designs

- Not code reuse

- Instead solution/strategy reuse

- Sometimes interface reuse

Elements of Design Patterns

• Pattern Name

• Problem statement - context where it might be
applied

• Solution - elements of the design, their relations,
responsibilities, and collaborations.

- Template of solution

• Consequences: Results and trade-offs

Example: Iterator Pattern

• Name: Iterator or Cursor

• Problem statement

- How to process elements of an aggregate in an
implementation independent manner

• Solution

- Aggregate returns an instance of an implementation of
Iterator interface to control iteration.

Iterator Pattern

• Consequences:

- Support different and simultaneous traversals

- Multiple implementations of Iterator interface

- One traversal per Iterator instance

• requires coherent policy on aggregate updates

- Invalidate Iterator by throwing an exception, or

- Iterator only considers elements present at the time of its
creation

Goals of Patterns

• To support reuse, of

- Successful designs

- Existing code (though less important)

• To facilitate software evolution

- Add new features easily, without breaking existing ones

• Design for change!

• Reduce implementation dependencies between
elements of software system.

Taxonomy of Patterns

• Creational patterns

- concern the process of object creation

• Structural patterns

- deal with the composition of classes or objects

• Behavioral patterns

- characterize the ways in which classes or objects interact
and distribute responsibility.

Creational Patterns
• Singleton

- Ensure a class only has one instance, and provide a global
point of access to it.

- Often used in recursively defined classes (e.g., lists & trees) where
don’t have public constructor, just public constant defined using
private constructor

• Abstract Factory

- Provide an interface for creating families of related or
dependent objects without specifying their concrete
classes.

- Allows hiding actual constructor call in method definition

Structural Patterns

• Adapter

- Convert the interface of a class into another interface
clients expect. Adapter lets classes work together that
couldn't otherwise because of incompatible interfaces

• Proxy

- Provide a surrogate or placeholder for another object to
control access to it

• Decorator

- Attach additional responsibilities to an object
dynamically

Behavioral Patterns
• Template

- Define the skeleton of an algorithm in an operation,
deferring some steps to subclasses

• Abstract superclass

• State

- Allow an object to alter its behavior when its internal
state changes. The object will appear to change its class

• Observer

- Define a one-to-many dependency between objects so
that when one object changes state, all its dependents are
notified and updated automatically

Creational Patterns

Abstract Factory

• Context:

- System should be independent of how pieces created and
represented

- Different families of components

- Must be used in mutually exclusive and consistent way

- Hide existence of different families from clients

Abstract Factory (cont.)

• Solution:

- Create interface w/ operations to create new products of
different kinds

- Multiple concrete classes implement operations to create
concrete product objects.

- Products also specified w/interface

- Concrete classes for each interface and family of
products.

- Client uses only interfaces

Abstract Factory (cont.)

• Examples:

- GUI Interfaces:
• Mac
• Windows XP
• Unix

Abstract Factory Consequences

• Isolate instance creation and handling from clients

• Can easily change look-and-feel standard

- Reassign a global variable

• Enforce consistency among products in each family

• Adding to family of products is difficult

- Have to update factory abstract class and all concrete
classes

Structural Patterns

Decorator Pattern

• Motivation

- Want to add responsibilities/capabilities to individual
objects, not to an entire class.

- Inheritance requires a compile-time choice of parent
class.

• Solution

- Enclose the component in another object that adds the
responsibility/capability

• The enclosing object is called a decorator.

Decorator Pattern

• A decorator forwards requests to its encapsulated
component and may perform additional actions
before or after forwarding.

• Can nest decorators recursively, allowing unlimited
added responsibilities.

• Can add/remove responsibilities dynamically

Decorator Pattern Consequences

• Advantages

- fewer classes than with static inheritance

- dynamic addition/removal of decorators

- keeps root classes simple

• Disadvantages

- proliferation of run-time instances

- abstract Decorator must provide common interface

• Tradeoffs:

- useful when components are lightweight

Decorator Example

FileReader frdr= new FileReader(filename);

LineNumberReader lrdr =
 new LineNumberReader(frdr);

String line;

line = lrdr.readLine()
while (line != null){

System.out.print(lrdr.getLineNumber() +
 ":\t" + line);
line = lrdr.readLine()

}

Behavioral Patterns

Observer Pattern

• Problem

- Objects that depend on a certain subject must be made
aware of when that subject changes

• E.g. receives an event, changes its local state, etc.

- These objects should not depend on the implementation
details of the subject

• They just care about how it changes, not how it’s
implemented.

Observer Pattern
• Solution structure

- Subject is aware of its observers (dependents)

- Observers are notified by the subject when something
changes, and respond as necessary

- Examples: Java event-driven programming

• Subject

- Maintains list of observers; defines a means for notifying
them when something happens

• Observer

- Defines the means for notification (update)

Observer Pattern
class Subject {
private Observer[] observers;

public void addObserver(Observer newObs){... }

public void notifyAll(Event evt){
forall obs in observers do
obs.process(this,evt)}

}

class Observer {
public void process(Subject sub, Event evt) {

 ... code to respond to event ...
}

}

Observer Pattern Consequences

• Low coupling between subject and observers

- Subject indifferent to its dependents; can add or remove
them at runtime

• Support for broadcasting

• Updates may be costly

- Subject not tied to computations by observers

Visitor Pattern
• Problem: want to implement multiple analyses on

the same kind of object data

- Spellchecking and Hyphenating Glyphs

- Generating code for and analyzing an Abstract Syntax
Tree (AST) in a compiler

• Flawed solution: implement each analysis as a
method in each object

- Follows idea objects are responsible for themselves

- But many analyses will occlude the objects' main code

- Result is classes hard to maintain

Visitor Pattern

• We define each analysis as a separate Visitor class

- Defines operations for each element of a structure

• A separate algorithm traverses the structure,
applying a given visitor

- But, like iterators, objects must reveal their
implementation to the visitor object

• Separates structure traversal code from operations
on the structure

- Observation: object structure rarely changes, but often
want to design new algorithms for processing

