
Lecture 39:
Object-Oriented Design

CS 62
Fall 2017

Kim Bruce & Alexandra Papoutsaki

What are objects?

• Objects have
• State/Properties — represented by instance variables

• Behavior — represented by methods
• accessor and mutator methods

Calculator

• Calculator class: User interface
• including buttons and display

• No real methods — construct & associate listeners

• State class: Current state of computation
• Methods invoked by listeners

• Communicate results to user interface

• Listener classes: Communicate from interface
to state

Model-View-Controller

State

• Instance variables:
• partialNumber, numberInProgress?, numStack,

calcDisplay

• Methods:
• addDigit(int Value)

• doOp(char op)

• enter, clear, pop

Model-View-Controller

• Dissociate user interface with the “model”
• “model” represents actual computation

• May have multiple alternate user interfaces
• Mobile vs laptop versions of UI

• Model should be unaffected by change in UI.

• In Java UI generally served by “event thread”
• If tie up event-thread with computation then user-

interface stops being responsive.

Designing Programs

• Identify the objects to be modeled

• List properties and behaviors of each object
• Model properties with instance variables

• Model behavior with methods (write spec)

• Refine by filling in the details
• Hold off committing to details of representation as long

as possible.

Implementation

• Write in small pieces. Test thoroughly before
moving on.

• Solve simpler problem first — use “stubs” if
necessary.

• Refactor as code becomes more complex.

Principles of OO Design

• Class should have a single responsibility

• Methods should have a single responsibility

• Program to an interface, not an
implementation

• Prefer composition to inheritance

Let’s Make an OO Design

• Write a system to help new business: Ryde!
• Dispatch autonomous “taxis” and “shuttles” to give

passengers rides.

• Handle all interactions:
• Take request, dispatch vehicle, pick up passenger,

deposit passenger at destination

Objects/Classes
• Company

• operates taxis/shuttles

• receives calls

• schedules vehicles

• Taxi
• Transports one passenger

• Shuttle
• Transports one or more

passengers

• Vehicle
• Picks up passenger

• Arrives at pickup location

• notifies company of arrival

• notifies company of drop-off

• Passenger
• Requests ride

• Enters vehicle
• Exits vehicle

• Location

Vehicle Class
• Properties

• Company

• CurrentLocation

• TargetLocation

• Constructor needs
• company, location

• Methods
• notify company at arrival

• notify company at
destination

• set pickup location
• pickup passenger

• offload passenger

• isFree

• getCurrentLocation

• setCurrentLocation
• getTargetLocation

• setTargetLocation

• clearTargetLocation

Company Class
• Properties

• Collection of taxis & shuttles

• Trips to be scheduled

• Constructor needs
• fleet of vehicles

• Methods
• Receive trip request
• Dispatch taxi

• Dispatch shuttle

• getCurrentLocation(vehicle)

More to be specified …
• Company

• operates taxis/shuttles

• receives calls

• schedules vehicles

• Taxi
• Transports one passenger

• Shuttle
• Transports one or more

passengers 

• Vehicle
• Picks up passenger

• Arrives at pickup location

• notifies company of arrival

• notifies company of drop-off

• Passenger
• Requests ride

• Enters vehicle
• Exits vehicle

• Location

After Specifying

• Write in small steps

• Test each method thoroughly using JUnit or
other testing mechanisms

• Don’t be afraid to refactor as new issues arise.
• Often better to start over then continue with flawed

design.

Readings on Object-Oriented
Design

• Practical Object-Oriented Design in
Ruby: An Agile Primer by Sandi Metz, 2013

• Design Patterns: Elements of Reusable
Object-Oriented Software by “Gang of
Four”, 1994

