
Lecture 38:
Parallel Streams

CS 62
Fall 2017

Kim Bruce & Alexandra Papoutsaki

Streams in Java 8

• (Lazy) Streams added in Java 8 to enable
simpler list processing
• Similar to functional languages

• Example:
• names.stream().filter(name -> name.startsWith(“B”) 

 .count()

• Returns count of number of elements of names starting
with “B”

• Compare with how write with loops.

• Add values in arr: arr.stream().reduce(0,((m,n) -> m+n));

More Streams

• Different kinds of streams
• IntStream, LongStream, DoubleStream

• Holds primitive values

• Stream<T>
• Holds objects

• Don’t use up storage: Lazy
• Can have infinite streams …

• Intermediate operations always lazy (like filter)

• Can’t change source

Creating Streams

• Collection classes have stream() and
parallelStream() methods

• Array has static method
• Array.stream(Array<T> arr) returns Stream<T>

• IntStream and LongStream have
range(start,end) methods
• range exclusive at top, rangeClosed inclusive.

• BufferedReader.lines()

Stream Operations

• Filtering Operations on Stream<T>:
• Stream<T> filter(Predicate<T> prop)

• Stream<R> map(Function<T,R> f)

• Stream<T> distinct()

• Stream<R> flatMap(Function<T,Stream<R>> f)

• Terminal Operations:
• int count()

• void forEach(Consumer<T> action)

• boolean allMatch(Predicate<T> f) anyMatch

Parallel Streams

• Stream<T> parallelStream()

• Tries a divide and conquer approach to solving
problem.
• Requires no explicit effort by programmer if data

structure set up properly (Spliterator)

Parallel Streams Example
public class Streaming {

private long countPrimes(int max) {
 return LongStream.range(1, max).parallel().filter(this::isPrime).count();
}

private boolean isPrime(long n) {
 return n > 1 && LongStream.rangeClosed(2, (long)Math.sqrt(n)).
 noneMatch(divisor -> n % divisor == 0);

}

public static void main(String[] args) {
Streaming streamer = new Streaming();
System.out.println(streamer.countPrimes(13));
System.out.println(streamer.countPrimes(10000000));

}

Static Parallel Streams Ex.
public class StaticStreaming {

private static long countPrimes(int max) {
 return LongStream.range(1, max).parallel().

 filter(StaticStreaming::isPrime).count();
}

private static boolean isPrime(long n) {
 return n > 1 && LongStream.rangeClosed(2, (long)Math.sqrt(n)).
noneMatch(divisor -> n % divisor == 0);

}

public static void main(String[] args) {
System.out.println(StaticStreaming.countPrimes(13));
System.out.println(StaticStreaming.countPrimes(10000000));

}
}

Double Colon Operator

• The code obj::isPrime is an abbreviation for a
lambda expression formed from isPrime:
• (n -> obj.isPrime(n))

OO-Design

What are objects?

• Objects have
• State/Properties — represented by instance variables

• Behavior — represented by methods
• accessor and mutator methods

Calculator

• Calculator class: User interface
• including buttons and display

• No real methods — construct & associate listeners

• State class: Current state of computation
• Methods invoked by listeners

• Communicate results to user interface

• Listener classes: Communicate from interface
to state

Model-View-Controller

State

• Instance variables:
• partialNumber, numberInProgress?, numStack,

calcDisplay

• Methods:
• addDigit(int Value)

• doOp(char op)

• enter, clear, pop

Model-View-Controller

• Dissociate user interface with the “model”
• “model” represents actual computation

• May have multiple alternate user interfaces
• Mobile vs laptop versions of UI

• Model should be unaffected by change in UI.

• In Java UI generally served by “event thread”
• If tie up event-thread with computation then user-

interface stops being responsive.

Designing Programs

• Identify the objects to be modeled
• E.g., Frogger game, Shell game

• List properties and behaviors of each object
• Model properties with instance variables

• Model behavior with methods (write spec)

• Refine by filling in the details
• Hold off committing to details of representation as long

as possible.

Implementation

• Write in small pieces. Test thoroughly before
moving on.

• Solve simpler problem first — use “stubs” if
necessary.

• Refactor as code becomes more complex.

Reading on Object-Oriented
Design

• Practical Object-Oriented Design in
Ruby: An Agile Primer by Sandi Metz, 2013

• Design Patterns: Elements of Reusable
Object-Oriented Software by “Gang of
Four”, 1994

