Lecture 37: Graphs IV

Fall 2017 Kim Bruce & Alexandra Papoutsaki

Single Source Shortest Path Problem

- From a starting node **s**, find the shortest path (and its length) to all other (reachable) nodes
- The collection of all shortest paths form a tree, called... the *shortest path tree*!
- If all edges have the same weight, we can use *BFS*.
- Otherwise ...

Single Source Shortest Path Problem

- If all edges have weights ≥ 0 then use Dijkstra's algorithm
- Essentially BFS with priority queue
- Priorities are best known distance to a node from **s**
- We can keep track of parent nodes to get shortest path
- Example of a **greedy** algorithm

Dijkstra's algorithm (1956) pseudocode

```
Q = {}; //set with unvisited vertices
for(every vertex v in V) {
   dist[v] = Infinity;
   parents[v] = null;
   Q.add(v);
}
   dist[s] = 0;
   while (!Q.isEmpty()) {
      u = vertex in Q with min dist[u];
      Q.remove(u);
      for(every edge (u,v)) {
         tentative = dist[u] + weight(u,v);
         if (tentative < dist[v]) {</pre>
            dist[v] = tentative;
            parents[v] = u;
         }
      }
   }
```

Dijkstra's algorithm (1984) pseudocode

```
Q = new PriorityQueue();
for(every vertex v in V) {
   dist[v] = Infinity;
   parents[v] = null;
   Q.addWithPriority(v,dist[v]);
}
   dist[s] = 0;
   Q.addWithPriority(s, 0);
   while (!Q.isEmpty()) {
      u = Q.extractmin();
      Q.remove(u);
      for(every edge (u,v)) {
         tentative = dist[u] + weight(u,v);
         if (tentative < dist[v]) {</pre>
            dist[v] = tentative;
            parents[v] = u;
            Q.reducePriority(v, tentative);
         }
      }
```

Run-time of Dijkstra

- Adding and removing from priority queue: $O(\log n)$
 - Each goes on and off once, so $O(n \log n)$
- reduce_priority: O(log n)
 - Worst case, once for each edge, so $O(m \log n)$
- Total time: $O((m+n)\log n)$

Dijkstra on sample graph

Dijkstra on sample graph

	Α	В	С	D	E	F	G	н
Init	0 _A	∞	∞	∞	8	∞	∞	∞
Α	0_A	8 _A	2_A	5_A	∞	∞	∞	∞
C	0 _A	8 _A	2_A	4 _C	7 _C	∞	∞	∞
D	0 _A	6 _D	2_A	4 _{<i>C</i>}	5 _D	10 _D	7 _D	∞
E	0 _A	6 _D	2_A	4 _{<i>C</i>}	5 _D	10 _D	6 _{<i>E</i>}	∞
В	0_A	6 _D	2_A	4 _{<i>C</i>}	5 _D	10 _D	6 _{<i>E</i>}	∞
G	0 _A	6 _D	2_A	4 _C	5 _D	8 _G	6 _{<i>E</i>}	12_E
F	0_A	6 _{<i>D</i>}	2_A	4 _{<i>C</i>}	5 _D	8 _{<i>G</i>}	6 _{<i>E</i>}	11_F
н	0 _A	6 _{<i>D</i>}	2_A	4 _C	5 _D	8 _{<i>G</i>}	6 _{<i>E</i>}	11_F

Follow the subscripts to find shortest path from start to any vertex

Spanning Trees

- A spanning tree T of a graph **G** is a subset of the edges of **G** such that:
 - T contains no cycles and
 - Every vertex in ${\boldsymbol{G}}$ is connected to every other vertex using just the edges in ${\boldsymbol{T}}$
- An unconnected graph has no spanning trees.
- A connected graph will have at least one spanning tree; it may have many

Minimum Spanning Trees

- A weighted graph is a graph that has a weight associated with each edge.
- If **G** is a weighted graph, the cost of a tree is the sum of the costs (weights) of its edges.
- A tree T is a minimum spanning tree of G iff:
 - it is a spanning tree and
 - there is no other spanning tree whose cost is lower than that of T.

Minimum Spanning Trees

- Application:
 - The cheapest way to lay cable that connects a set of points is along a minimum spanning tree that connects those points.
- Many algorithms exist to find minimum spanning trees, most run in $O(m \log m)$ time.
- In 1995 Karger, Klein & Tarjan found a linear time randomized algorithm, but there is no known linear time deterministic algorithm

Kruskal's Algorithm

- Create forest **F** with no edges, using vertices in **V**
- Sort the edges in the graph by their weight (smallest to largest)
- For each edge **e** in sorted order:
 - if e connects two different trees in ${\sf F}$, then add e to ${\sf F}$

Kruskal on sample graph

Kruskal's Algorithm pseudocode

```
A = {};
for(every vertex v in V) {
    make-set(v)
    for(every edge (u, v) ordered by increasing weight) {
        if(find (u) != find (v)) {
            A.add((u, v));
            union(u, v);
        }
}
return A;
```

make-set(v) - makes a set from a single vertex v
find(v) - finds the set that v belongs to
union(u, v) - makes the union of the sets containing u and v

Union-find structure

Graph Algorithms

- Very important in practice!
- Sophisticated data structures
- Careful analysis of correctness and complexity
- CS 140: Algorithms