
CS 62
Fall 2017

Kim Bruce & Alexandra Papoutsaki

1

Lecture 37: Graphs IV

Single Source Shortest Path Problem

• From a starting node s, find the shortest path (and its length)
to all other (reachable) nodes
• The collection of all shortest paths form a tree, called...
the shortest path tree!
• If all edges have the same weight, we can use BFS.
• Otherwise …

2

Single Source Shortest Path Problem

• If all edges have weights ≥ 0 then use Dijkstra’s algorithm
• Essentially BFS with priority queue
• Priorities are best known distance to a node from s
• We can keep track of parent nodes to get shortest path
• Example of a greedy algorithm

3

Dijkstra’s algorithm (1956) pseudocode

Q = {}; //set with unvisited vertices

for(every vertex v in V) {

dist[v] = Infinity;

parents[v] = null;

Q.add(v);

}

dist[s] = 0;

while (!Q.isEmpty()) {

u = vertex in Q with min dist[u];

Q.remove(u);

for(every edge (u,v)) {

tentative = dist[u] + weight(u,v);

if (tentative < dist[v]) {

dist[v] = tentative;

parents[v] = u;

}

}

}
4

Dijkstra’s algorithm (1984) pseudocode

Q = new PriorityQueue();

for(every vertex v in V) {

dist[v] = Infinity;

parents[v] = null;

Q.addWithPriority(v,dist[v]);

}

dist[s] = 0;
Q.addWithPriority(s, 0);

while (!Q.isEmpty()) {

u = Q.extractmin();

Q.remove(u);

for(every edge (u,v)) {

tentative = dist[u] + weight(u,v);

if (tentative < dist[v]) {

dist[v] = tentative;

parents[v] = u;

Q.reducePriority(v, tentative);

}

}

}
5

Run-time of Dijkstra

• Adding and removing from priority queue: 𝑂(log	𝑛)	
• Each goes on and off once, so 𝑂(𝑛	log	𝑛)	

• reduce_priority: 𝑂(log	𝑛)	
• Worst case, once for each edge, so 𝑂(𝑚	log	𝑛)	

• Total time: 𝑂((𝑚 + 𝑛)	log	𝑛)

6

Dijkstra on sample graph

7

A

B F

H

C E

D

G

8

5

2

13

3

3

2

6

1

1
2

5

2

6

Dijkstra on sample graph

A B C D E F G H

Init 0, ∞ ∞ ∞ ∞ ∞ ∞ ∞

A 0, 8, 2, 5, ∞ ∞ ∞ ∞

C 0, 8, 2, 42 72 ∞ ∞ ∞

D 0, 65 2, 42 55 105 75 ∞

E 0, 65 2, 42 55 105 67 ∞

B 0, 65 2, 42 55 105 67 ∞

G 0, 65 2, 42 55 88 67 127

F 0, 65 2, 42 55 88 67 119

H 0, 65 2, 42 55 88 67 119

8Follow the subscripts to find shortest path from start to any vertex

Spanning Trees

• A spanning tree T of a graph G is a subset of the edges of G
such that:
• T contains no cycles and
• Every vertex in G is connected to every other vertex using just the

edges in T
• An unconnected graph has no spanning trees.
• A connected graph will have at least one spanning tree; it

may have many

9

Minimum Spanning Trees

• A weighted graph is a graph that has a weight associated
with each edge.

• If G is a weighted graph, the cost of a tree is the sum of the
costs (weights) of its edges.

• A tree T is a minimum spanning tree of G iff:
• it is a spanning tree and
• there is no other spanning tree whose cost is lower than that of T.

10

Minimum Spanning Trees

• Application:
• The cheapest way to lay cable that connects a set of points is along

a minimum spanning tree that connects those points.

• Many algorithms exist to find minimum spanning trees, most
run in 𝑂(𝑚	log	𝑚)	time.

• In 1995 Karger, Klein & Tarjan found a linear time
randomized algorithm, but there is no known linear time
deterministic algorithm

11

Kruskal’s Algorithm

• Create forest F with no edges, using vertices in V
• Sort the edges in the graph by their weight (smallest to

largest)
• For each edge e in sorted order:
• if e connects two different trees in F , then add e to F

12

Kruskal on sample graph

(1,2):1
(2,3):2
(4,5):3
(6,7):3
(1,4):4
(2,5):4
(4,7):4
(3,5):5
(2,4):6
(3,6):6
(5,7):7
(5,6):8

13

1 2 3

4 5 6

7

4

1

6 4
6

8

5

3

4 3
7

2

(1,2):1
(2,3):2
(4,5):3
(6,7):3
(1,4):4
(2,5):4
(4,7):4
(3,5):5
(2,4):6
(3,6):6
(5,7):7
(5,6):8

14

1 2 3

4 5 6

7

4

1

6 4
6

8

5

3

4 3

2

7

1 2 3

4 5 6

7

1

6 4
6

8

5

3

4 3

2

7

1 2 3

4 5 6

7

1

6 4
6

8

5

3

4 3

2

7

1 2 3

4 5 6

7

1

6 4
6

8

5

3

4 3

2

7

1 2 3

4 5 6

7

1

6 4
6

8

5

3

4 3

2

7

1 2 3

4 5 6

7

1

6 4
6

8

5

3

4 3

2

7

4 4

4 4 4

Kruskal’s Algorithm pseudocode

15

A = {};
for(every vertex v in V) {

make-set(v)
for(every edge (u, v) ordered by increasing weight) {

if(find (u) != find (v)) {
A.add((u, v));
union(u, v);

}
}
return A;

make-set(v) - makes a set from a single vertex v
find(v) - finds the set that v belongs to
union(u, v) - makes the union of the sets containing u and v

Union-find structure

Graph Algorithms

• Very important in practice!
• Sophisticated data structures
• Careful analysis of correctness and complexity
• CS 140: Algorithms

16

