Lecture 37: Graphs IV

$$
\text { CS } 62
$$

Fall 2017
Kim Bruce \& Alexandra Papoutsaki

Single Source Shortest Path Problem

- From a starting node s, find the shortest path (and its length) to all other (reachable) nodes
- The collection of all shortest paths form a tree, called... the shortest path tree!
- If all edges have the same weight, we can use BFS.
- Otherwise ...

Single Source Shortest Path Problem

- If all edges have weights ≥ 0 then use Dijkstra's algorithm
- Essentially BFS with priority queue
- Priorities are best known distance to a node from s
- We can keep track of parent nodes to get shortest path
- Example of a greedy algorithm

Dijkstra's algorithm (1956) pseudocode

```
Q = {}; //set with unvisited vertices
for(every vertex v in V) {
    dist[v] = Infinity;
    parents[v] = null;
    Q.add(v);
}
    dist[s] = 0;
    while (!Q.isEmpty()) {
        u = vertex in Q with min dist[u];
        Q.remove(u);
        for(every edge (u,v)) {
            tentative = dist[u] + weight(u,v);
            if (tentative < dist[v]) {
                dist[v] = tentative;
                parents[v] = u;
            }
        }
    }
```


Dijkstra's algorithm (1984) pseudocode

```
Q = new PriorityQueue();
for(every vertex v in V) {
    dist[v] = Infinity;
    parents[v] = null;
    Q.addWithPriority(v,dist[v]);
}
    dist[s] = 0;
    Q.addWithPriority(s, 0);
    while (!Q.isEmpty()) {
        u = Q.extractmin();
        Q.remove(u);
        for(every edge (u,v)) {
            tentative = dist[u] + weight(u,v);
            if (tentative < dist[v]) {
            dist[v] = tentative;
            parents[v] = u;
            Q.reducePriority(v, tentative);
            }
        }

\section*{Run-time of Dijkstra}
- Adding and removing from priority queue: \(O(\log n)\) - Each goes on and off once, so \(O(n \log n)\)
- reduce_priority: \(O(\log n)\)
- Worst case, once for each edge, so \(O(m \log n)\)
- Total time: \(O((m+n) \log n)\)

Dijkstra on sample graph


\section*{Dijkstra on sample graph}
\begin{tabular}{lllllllll}
\hline & \(\mathbf{A}\) & \(\mathbf{B}\) & \(\mathbf{C}\) & \(\mathbf{D}\) & \(\mathbf{E}\) & \(\mathbf{F}\) & \(\mathbf{G}\) & \(\mathbf{H}\) \\
\hline Init & \(0_{A}\) & \(\infty\) \\
A & \(0_{A}\) & \(8_{A}\) & \(2_{A}\) & \(5_{A}\) & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) \\
C & \(0_{A}\) & \(8_{A}\) & \(2_{A}\) & \(4_{C}\) & \(7_{C}\) & \(\infty\) & \(\infty\) & \(\infty\) \\
D & \(0_{A}\) & \(6_{D}\) & \(2_{A}\) & \(4_{C}\) & \(5_{D}\) & \(10_{D}\) & \(7_{D}\) & \(\infty\) \\
E & \(0_{A}\) & \(6_{D}\) & \(2_{A}\) & \(4_{C}\) & \(5_{D}\) & \(10_{D}\) & \(6_{E}\) & \(\infty\) \\
B & \(0_{A}\) & \(6_{D}\) & \(2_{A}\) & \(4_{C}\) & \(5_{D}\) & \(10_{D}\) & \(6_{E}\) & \(\infty\) \\
G & \(0_{A}\) & \(6_{D}\) & \(2_{A}\) & \(4_{C}\) & \(5_{D}\) & \(8_{G}\) & \(6_{E}\) & \(12_{E}\) \\
\hline F & \(0_{A}\) & \(6_{D}\) & \(2_{A}\) & \(4_{C}\) & \(5_{D}\) & \(8_{G}\) & \(6_{E}\) & \(11_{F}\) \\
\hline H & \(0_{A}\) & \(6_{D}\) & \(2_{A}\) & \(4_{C}\) & \(5_{D}\) & \(8_{G}\) & \(6_{E}\) & \(11_{F}\) \\
\hline
\end{tabular}

Follow the subscripts to find shortest path from start to any vertex

\section*{Spanning Trees}
- A spanning tree \(T\) of a graph \(G\) is a subset of the edges of \(G\) such that:
- T contains no cycles and
- Every vertex in G is connected to every other vertex using just the edges in T
- An unconnected graph has no spanning trees.
- A connected graph will have at least one spanning tree; it may have many

\section*{Minimum Spanning Trees}
- A weighted graph is a graph that has a weight associated with each edge.
- If G is a weighted graph, the cost of a tree is the sum of the costs (weights) of its edges.
- A tree \(T\) is a minimum spanning tree of \(G\) iff:
- it is a spanning tree and
- there is no other spanning tree whose cost is lower than that of T .

\section*{Minimum Spanning Trees}
- Application:
- The cheapest way to lay cable that connects a set of points is along a minimum spanning tree that connects those points.
- Many algorithms exist to find minimum spanning trees, most run in \(O(m \log m)\) time.
- In 1995 Karger, Klein \& Tarjan found a linear time randomized algorithm, but there is no known linear time deterministic algorithm

\section*{Kruskal's Algorithm}
- Create forest \(F\) with no edges, using vertices in \(V\)
- Sort the edges in the graph by their weight (smallest to largest)
- For each edge e in sorted order:
- if e connects two different trees in \(F\), then add \(e\) to \(F\)

\section*{Kruskal on sample graph}
(1,2):1
\((2,3): 2\)
\((4,5): 3\)
\((6,7): 3\)
\((1,4): 4\)
\((2,5): 4\)
\((4,7): 4\)
\((3,5): 5\)
\((2,4): 6\)
\((3,6): 6\)
(5,7):7
(5,6):8



\section*{Kruskal's Algorithm pseudocode}
```

A = {};
for(every vertex v in V) {
make-set(v)
for(every edge (u, v) ordered by increasing weight) {
if(find (u) != find (v)) {
A.add((u, v));
union(u, v);
}
}
return A;

```
make-set ( \(v\) ) - makes a set from a single vertex \(v\)
find (v) - finds the set that \(v\) belongs to
Union-find structure union ( \(u, v\) ) - makes the union of the sets containing \(u\) and \(v\)

\section*{Graph Algorithms}
- Very important in practice!
- Sophisticated data structures
- Careful analysis of correctness and complexity
- CS 140: Algorithms```

