Lecture 34: Graphs I

$$
\text { CS } 62
$$

Fall 2017
Kim Bruce \& Alexandra Papoutsaki

Assignment

Graphs

- Represent relationships that exist between pairs of objects
- Nothing to do with charts and function plots!
- Extremely versatile, can be used to represent many problems

The Graph ADT

A graph $G=(V, E)$

- V is a finite, non-empty set of vertices (or nodes)
- E is a binary relation on V (that is, E is a collection of edges that connects pairs of vertices)
- Edges are either directed or undirected

Applications

- transportation networks (flights, roads, etc.)
- flights and flight patterns.
- what sort of questions might we ask? What sort of application might we be interested in having a graph?
- booking flights, picking shortest time? shortest distance?
- airlines save fuel, number of people who use the route
- Google maps
- driving directions, mapping out sightseeing

More Applications

- communications networks/utility networks
- electrical grid, phone networks, computer networks
- minimize cost for building infrastructure
- minimize losses, route packets faster
- social networks
- Does this person know that person.
- Can this person introduce me to that person - job opportunities

Undirected Graphs

Example: $G=(V, E)$, where

- $V=\{A, B, C, D\}$
- $E=\{\{A, C\},\{A, B\},\{A, D\},\{B, D\}$

Definitions for UnDirected Graphs

- subgraph: is a subset of a graph's edges (and associated vertices) that constitutes a graph.
- path: a sequence of connected vertices.
- simple path - a path where all vertices occur only once.
- path length: number of edges in the path.
- Example: path C-A-D-B has length 3.
- cycle: path of length ≥ 1 that begins and ends with the same vertex.
- Example: path A-D-B-A is a cycle.
- simple cycle: a simple path that begins and ends with the same vertex.

More Definitions for UnDirected Graphs

- self loop: Cycle consisting of one edge and one vertex.
- adjacent vertices: when connected by an edge.
- incident edge: the edge that is incident on two adjacent vertices
- Edge (A, B) above is incident on adjacent vertices A and B
- degree: number of incident edges on a vertex.
- simple graph: a graph with no self loops.
- acyclic graph: a graph with no cycles.

Even More Definitions for UnDirected Graphs

- connected vertices: if path that connects them exists
- connected graph: a graph where every pair of vertices is connected by a path.
- tree: acyclic connected graph
- forest: disjoint set of trees

Directed Graphs (Digraphs)

Example: $G=(V, E)$, where

- $V=\{1,3,9,13\}$
- $E=\{(1,3),(3,1),(13,1),(9,9)(9,13)\}$

Definitions for Digraphs

- subgraph: subset of a digraph's edges (and associated vertices) that constitutes a digraph.
- path: sequence of vertices with a (directed) edge pointing from each vertex to its successor - simple path - a path where all vertices occur only once.
- length: number of edges in the path.
- cycle: directed path of length ≥ 1 that begins and ends with the same vertex.
- simple cycle: a simple path that begins and ends with the same vertex.

More Definitions for Digraphs

- self loop: Cycle consisting of one edge and one vertex.
- Example: 9
- outdegree: number of edges pointing from it.
- indegree: number of edges pointing to it.
- directed acyclic graph (DAG): a digraph with no directed cycles.

Even More Definitions for Digraphs

- reachable vertices: when there is a directed path from one to another.
- strongly connected vertices: if mutually reachable
- strongly connected digraph: directed path from every vertex to every other vertex
- weakly connected graph: a digraph that would be connected if all of its directed edges were replaced by undirected edges.

