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Concurrent Programming

• Concurrency: Allowing simultaneous or 
interleaved access to shared resources from 
multiple clients

• Requires coordination, particularly 
synchronization to avoid incorrect 
simultaneous access: make somebody block
• join is not what we want

• block until another thread is “done using what we need” 
not “completely done executing”

Canonical Example

• Several ATM’s accessing same account.
• See ATM2

• Solved with synchronized blocks
• or synchronized methods

Event-Driven Programming 
in Java

• When an event occurs, it is posted to 
appropriate event queue.  
• Java GUI components share an event queue.

• Any thread can post to the queue

• Only the “event thread” can remove event from the 
queue.  

• When event removed from queue, thread 
executes the appropriate method of listener w/
event as parameter.



Maze Program

• When user clicks “solve maze” button, spawns 
Thread to solve maze.

• Event thread responsible for painting screen 
and responding to GUI components
• If response takes more than a few milliseconds, spawn a 

separate thread to do the work!

Example: Maze-Solver

• Start button ⇒ StartListener object

• Clear button ⇒ ClearAndChooseListener

• Maze choice ⇒ ClearAndChooseListener
• Stops maze from running!  How?

• Speed slider ⇒ SpeedListener

Listeners

• Different kinds of GUI items require different 
kinds of listeners:
• Button -- ActionListener

• Mouse -- MouseListener, MouseMotionListener

• Slider -- ChangeListener

• See GUI cheatsheet on documentation web 
page

Event Thread

• Removes events from queue

• Executes appropriate methods in listeners

• Also handles repaint events

• Must remain responsive!
• Code must complete and return quickly

• If not, then spawn new thread!



Why did Maze Freeze?

• When start with run() instead of start(), solver 
animation was being run by event thread

• Because didn’t return until solved, was not 
available to remove events from queue.
• Could not respond to GUI controls

• Could not paint screen

Off to the Races

• A race condition occurs when the computation 
result depends on scheduling (how threads are 
interleaved).  Answer depends on shared state.

• Bugs that exist only due to concurrency
• No interleaved scheduling with 1 thread

• Typically, problem is some intermediate state 
that “messes up” a concurrent thread that 
“sees” that state

Example
class Stack<E> {
  …
  synchronized void push(E val) { … }
  synchronized E pop() { 

  if(isEmpty())
           throw new StackEmptyException();
   …
  }

  E peek() {
     E ans = pop();
     push(ans);
     return ans;
  }
}

Sequentially Fine

• Correct in sequential world

• May need to write this way, if only have access 
to push, pop, & isEmpty methods.

• peek() should have no overall effect on data 
structure
• reads rather than writes



Concurrently Flawed

• Way it’s implemented creates an inconsistent 
intermediate state
• Even though calls to push and pop are synchronized so 

no data races on the underlying array/list/whatever

• (A data race is simultaneous (unsynchronized) read/write 
or write/write of the same memory: more on this soon)

• This intermediate state should not be exposed
• Leads to several wrong interleavings…

Lose Invariants

• Want: If there is at least one push and no pops, 
then isEmpty always returns false.

• Fails with two threads if one is doing a peek, 
other isEmpty, & unlucky.

• Gets worse: Can lose LIFO property
• Problem do push while doing peek.

• Want: If # pushes > # pops then peek never 
throws an exception.
• Can fail if two threads do simultaneous peeks

Solution

• Make peek synchronized (w/same lock)
• No problem with internal calls to push and pop because 

locks reentrant

• Just because all changes to state done within 
synchronized pushes and pops doesn’t prevent 
exposing intermediate state.

• Re-entrant locks allows calls to push and pop if 
use same lock

class Stack<E> { 
  … 
  synchronized E peek(){ 
     E ans = pop(); 
     push(ans); 
     return ans; 
  } 
}

From within Stack

class C { 
  <E> E myPeek(Stack<E> s){ 
    synchronized (s) { 
      E ans = s.pop(); 
      s.push(ans); 
      return ans; 
    } 
  } 
}

From outside Stack



Beware of Accessing 
Changing Data

• Even if unsynchronized methods don’t change 
it.

class Stack<E> { 
  private E[] array = (E[])new Object[SIZE]; 
  int index = -1; 
  boolean isEmpty() { // unsynchronized: wrong?! 
    return index==-1;  
  } 
  synchronized void push(E val) { 
   array[++index] = val; 
  } 
  synchronized E pop() {  
   return array[index--]; 
  } 
  E peek() { // unsynchronized: wrong! 
    return array[index]; 
  } 
}

Providing Safe Access
• For every memory location (e.g., object field) in 

your program, you must obey at least one of 
the following:
• Thread-local: Don’t access the location in > 1 thread

• Immutable: Don’t write to the memory location

• Synchronized: Use synchronization to control access to 
the location

all memory thread-local 
memory immutable 

memory

need  
synchronization

Conventional Wisdom

Thread-Local

• Whenever possible, don’t share resources
• Easier to have each thread have its own thread-local 

copy of a resource than to have one with shared updates

• This is correct only if threads don’t need to 
communicate through the resource
• That is, multiple copies are a correct approach

• Note: Since each call-stack is thread-local, never need to 
synchronize on local variables

• In typical concurrent programs, the vast majority of 
objects should be thread-local: shared-memory should 
be rare – minimize it



Immutable
• Whenever possible, don’t update objects

• Make new objects instead

• One of key tenets of functional programming 
• Hopefully you (will | did) study this in 52

• Generally helpful to avoid side-effects

• Much more helpful in a concurrent setting

• If a location is only read, never written, no 
synchronization is necessary!
• Simultaneous reads are not races and not a problem

• Programmers over-use mutation – minimize it

Dealing with the Rest

• Guideline: No data races
• Never allow two threads to read/write or write/write the 

same location at the same time

• Necessary: In Java or C, a program with a data 
race is almost always wrong

Worse Than You Think!

• Assertion always true w/
single threaded.

• Looks always true for 
multithreaded.
• OK if f not called at all

• OK after f completes

• Looks OK if in middle of f

• But have race condition

class C { 
  private int x = 0; 
  private int y = 0; 
  void f() { 
    x = 1; 
    y = 1; 
  } 
  void g() { 
    int a = y; 
    int b = x; 
    assert(b >= a); 
  }    
}

Memory Reordering
• For performance reasons, compiler and hardware 

reorder memory operations.

• But, but, ...
• Compiler/hardware will never perform a memory reordering 

that affects the result of a single-threaded program

• The compiler/hardware will never perform a memory 
reordering that affects the result of a data-race-free multi-
threaded program

• So: If no interleaving of your program has a data 
race, then need not worry: result will be 
equivalent to some interleaving



A Second Fix

• If label field volatile, accesses don’t count as 
data races

• Implementation forces memory consistency
• though slower!

• Should have used this in CS 51 w/shared 
variables.

• Really for experts -- better to use locks.

Lock Granularity

• Coarse-grained:  Fewer locks, i.e., more objects per 
lock
• Example: One lock for entire data structure (e.g., array)

• Example: One lock for all bank accounts

• Fine-grained: More locks, i.e., fewer objects per lock
• Example: One lock per data element (e.g., array index)

• Example: One lock per bank account

• “Coarse-grained vs. fine-grained” is really a 
continuum.

Trade-Offs
• Coarse-grained advantages

• Simpler to implement

• Faster/easier to implement operations that access 
multiple locations (because all guarded by the same lock)

• Much easier: ops that modify data-structure shape

• Fine-grained advantages
• More simultaneous access (performance when coarse-

grained would lead to unnecessary blocking)

• Guideline: 
• Start with coarse-grained (simpler) and move to fine-

grained (performance) only if contention on the coarser 
locks becomes an issue.  Alas, often leads to bugs.

Critical-section granularity
• A second, orthogonal granularity issue is critical-

section size
• How much work to do while holding lock(s)

• If critical sections run for too long:
• Performance loss because other threads are blocked

• If critical sections are too short:
• Bugs because you broke up something where other threads 

should not be able to see intermediate state

• Guideline: Don’t do expensive computations or 
I/O in critical sections, but also don’t introduce 
race conditions


