
Lecture 30:
Shared Memory Concurrency

CS 62
Fall 2017

Kim Bruce & Alexandra Papoutsaki

Some slides based on those from Dan Grossman,
U. of Washington

Sharing Resources

• Have been studying parallel algorithms using
fork-join
• Reduce span via parallel tasks

• Algorithms all had a very simple structure to
avoid race conditions
• Each thread had memory “only it accessed”

• Example: array sub-range

• On fork, “loaned” some of its memory to “forkee” and
did not access that memory again until after join on the
“forkee”

But ...

• Strategy won’t work well when:
• Memory accessed by threads is overlapping or

unpredictable

• Threads are doing independent tasks needing access to
same resources (rather than implementing the same
algorithm)

• How do we control access?

Concurrent Programming

• Concurrency: Allowing simultaneous or
interleaved access to shared resources from
multiple clients

• Requires coordination, particularly
synchronization to avoid incorrect
simultaneous access: make somebody block
• join is not what we want

• block until another thread is “done using what we need”
not “completely done executing”

Non-Deterministic
Computation

• Even correct concurrent applications are
usually highly non-deterministic: how threads are
scheduled affects what operations from other
threads they see and when they see them.

• Non-repeatability complicates testing and
debugging

Examples

• Multiple threads:
• Processing different bank-account operations

• What if 2 threads change the same account at the same time?

• Using a shared cache of recent files
• What if 2 threads insert the same file at the same time?

• Creating pipeline w/ queue for handing work to
next thread in sequence?
• What if enqueuer and dequeuer adjust a circular array

queue at the same time?

Threads again?!?

• Not about speed, but
• Code structure for responsiveness

• Example: Respond to GUI events in one thread while another
thread is performing an expensive computation

• Processor utilization (mask I/O latency)
• If 1 thread “goes to disk,” have something else to do

• Failure isolation
• Convenient structure if want to interleave multiple tasks and don’t

want an exception in one to stop the other

Sharing is the Key

• Common to have:
• Different threads access the same resources in an

unpredictable order or even at about the same time
• But program correctness requires that simultaneous access be

prevented using synchronization

• Simultaneous access is rare
• Makes testing difficult

• Must be much more disciplined when designing / implementing a
concurrent program

• Will discuss common idioms known to work

Canonical Example

• Several ATM’s accessing same account.
• See ATM2

Bad Interleavings
Interleaved changeBalance(-100) calls on the same account
–Assume initial balance 150

int nb = b + amount;

if(nb < 0)
 throw new …;
balance = nb;

int nb = b + amount;
if(nb < 0)
 throw new …;
balance = nb;

Thread 1 Thread 2

Ti
m

e

“Lost withdraw” –
unhappy bank

Interleaving is the Problem
• Suppose:

• Thread T1 calls changeBalance(-100)

• Thread T2 calls changeBalance(-100)

• If second call starts before first finishes, we say
the calls interleave
• Could happen even with one processor since a thread

can be pre-empted at any point for time-slicing

• If x and y refer to different accounts, no
problem
• “You cook in your kitchen while I cook in mine”

• But if x and y alias, possible trouble…

Problems with Account

• Get wrong answers!

• Try to fix by getting balance again, rather than
using newBalance.
• Still can have interleaving, though less likely

• Can go negative w/ wrong interleaving!

Solve with Mutual Exclusion

• At most one thread withdraws from account A
at one time.

• Areas where don’t want two threads executing
called critical sections.

• Programmer needs to decide where, as
compiler doesn’t know intentions.

Java Solution
• Re-entrant locks via synchronized blocks

• Syntax:
• synchronized (expression) {statements}

• Evaluates expression to an object and tries to
grab it as a lock
• If no other process is holding it, grabs it and executes

statements. Releasing when finishes statements.

• If another process is holding it, waits until it is released.

• Net result: Only one thread at a time can
execute a synchronized block w/same lock

Correct Code
public class Account {
 private Object myLock = new Object();
 ...

// return balance
public int getBalance() {

synchronized(myLock){ return balance; }
}

// update balance by adding amount
public void changeBalance(int amount) {

synchronized(myLock) {
 int newBalance = balance + amount;

 display.setText("" + newBalance);
 balance = newBalance;

 }
}

}

Better Code
public class Account {
 ...

// return balance
public int getBalance() {

synchronized(this){ return balance; }
}

// update balance by adding amount
public void changeBalance(int amount) {

synchronized(this) {
 int newBalance = balance + amount;

 display.setText("" + newBalance);
 balance = newBalance;

 }
}

}

Best Code
public class Account {
 ...

// return balance
synchronized public int getBalance() {

return balance;
}

// update balance by adding amount
synchronized public void changeBalance(int amount) {

int newBalance = balance + amount;
display.setText("" + newBalance);
balance = newBalance;

}
}

Reentrant Locks

• If thread holds lock when executing code, then
further method calls within block don’t need to
reacquire same lock.
• E.g., Methods m and n are both synchronized with same

lock (e.g., with this), and execution of m results in calling
n. Then once thread has the lock executing m, no delay
in calling n.

