
9/4/17

1

CS 62
Fall 2017

Kim Bruce & Alexandra Papoutsaki

Lecture 3: Java Graphics
& Events

1

Text Input

• Scanner class
• Constructor: myScanner = new Scanner(System.in);

• can use file instead of System.in
• new Scanner(new File(“filename”))

• Read values:
• myScanner.nextInt() -- returns an int
• myScanner.nextDouble() -- returns a double
• myScanner.nextLine() -- returns String -- to end of line
• see documentation for more

2

For more details

3

• See document on course web page associated with lecture.

• See GUI cheat sheet in documentation and handouts section.

Overview

• Graphical User Interfaces (GUI)
• JFrame (window), JPanel (grouping)
• JButton, JTextField, JSlider, JChooser, …

• Graphics
• Drawing items on the screen

• Events
• Generated by mouse actions, button clicks etc.
• Use MouseListener, MouseMotionListener, ActionListener,

etc. to respond

9/4/17

2

Graphical User Interfaces (GUIs)

• AWT - The Abstract Windowing Toolkit is found in the package
java.awt.
• Heavyweight components.
• Implemented with native native code written for that particular

computer.
• The AWT library was written in six weeks!

• Swing – Java 1.2 extended AWT with the javax.swing package.
• Lightweight components
• Written in Java

JFrame
• javax.swing.JFrame inherits from java.awt.Frame
• The outermost container in an application.

• To display a window in Java:
• create a JFrame
• set the size
• set the location
• set it visible

import javax.swing.JFrame;
public class MyFirstGUI extends JFrame{

public MyFirstGUI() {
super("First Frame");
setSize(500, 300);
setLocation(100, 100);
setVisible(true);

}
public static void main(String[] args) {

MyFirstGUI mfgui = new MyFirstGUI();
}

}

Screen Location

Assume	1440x900	screen	resolution

(0,0)

(0,900)

(1440,0)

(1440,900)

Increasing Y

Increasing X

9/4/17

3

Positioning a window

import javax.swing.JFrame;
import java.awt.Dimension;
import java.awt.Toolkit;

public class MySecondGUI extends JFrame{
public MySecondGUI() {

super("Second Frame");
setSize(500, 300);
Toolkit toolkit = getToolkit();
Dimension size = toolkit.getScreenSize();
setLocation(size.width/2 - getWidth()/2,
size.height/2 - getHeight()/2);
setVisible(true);

}
}

9

Closing a GUI

• The default operation of the quit button is to set the visibility to
false
• The program does not terminate!

• setDefaultCloseOperation can be used to control this behavior.

• mfgui.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
• Exits the application using System.exit(0)

• More options (hide, do nothing, etc).

Basic Controls Interactive Displays

9/4/17

4

Graphics

• Create objects you want to draw:
• Rectangle2D.Double, Line.Double, etc.
• Constructors take x,y coords and dimensions, but don’t actually draw

items.

• All drawing takes place in paint method using a “graphics
context”

• Triggered implicitly by uncovering window or explicitly by
calling repaint method.
• Adds repaint event to event queue — eventually draws it

Graphics context

•All drawing is done in “paint” method of component
• public void paint(Graphics g)
• g is a Graphics context provided by system
• “pen” that does the drawing
• Programmer calls repaint(), not paint!!

•Need to import classes from java.awt.*,
java.geom.*, javax.swing.*
• See MyGraphicsDemo

General Graphics Applications

•Create an extension of component (either JPanel,
JFrame, or JApplet) and implement paint method
in the subclass.
• See main method of demo to get window to show
• At start of paint method cast g to Graphics2D to get

access to new methods

•Call repaint() on component every time you make
a change.

• Causes OS to schedule call of paint in event queue
• Called automatically if window obscured and revealed

Geometric Objects

• Objects from classes Rectangle2D.Double,
Line2D.Double, etc. from java.awt.geom
• There are also float versions
• Constructors take params x, y, width, height, but don’t draw object

• Rectangle2D.Double
• RoundRectangle2D.Double
• Ellipse2D.Double
• Arc2D.Double
• Line2D.Double, …

9/4/17

5

java.awt.Color

Methods

• myObj.setFrame(x,y,width,height) : can	move	object
• g2.draw(myObj) : gives	outline
• g2.fill(myObj) :	gives	filled	version
• g2.drawString(“a string”,x,y) : draws	string

MyGraphicsDemo

• Class extends JFrame, which creates window.

• Constructor calls super with title of window.

• main method creates object, sets size, visibility, and enables
go-away box.

• paint method creates and draws objects.

9/4/17

6

BorderLayout PostItApplication

• More sophisticated.

• JFrame contains two JPanels.

• JFrame uses BorderLayout, so add controls to JPanel in
SOUTH, drawing canvas in CENTER of the JFrame.

• DrawingCanvas extends JPanel -- contains paint method
• Note use of ArrayList to hold PostIts.

PostIt Class

• Represents the rectangles being dragged:
• Contains accessor and mutator methods to allow it to be

manipulated by drawing program.
• Could add features (title bar, go-away box) without affecting
PostItApplication code.

PostItApplication

• PostItApplication class responsible for
• setting up the GUI
• Responding to button pressed and menu selections
• Sets up ArrayList of items on canvas.

• Class has 3 inner classes
• DrawingCanvas
• DrawingMouseListener
• DrawingMouseMotionListener
• Inner classes have access to private features of containing class

9/4/17

7

Inner Classes

• DrawingPanel extends JPanel
• Associates listeners for mouse actions on the panel
• Responsible for repainting the screen

• DrawingMouseListener and DrawingMouseMotionListener
• Responsible for responding to mouse actions by changing the items in

the ArrayList.

Event-Driven Programming

Handling Mouse Events
• If want program to react to mouse press, click, or release on a

component
• send addMouseListener(mlo) to component (usually in the

constructor of the component)
• See PostItApplication.java
• For motion or drag, send addMouseMotionListener(mlo)

• When user presses mouse on a component
• Computer looks for registered “MouseListener” for component or its

containers.
• If found, sends mousePressed(evt) to listener

Listener
• object designated as mouse listener must
• implement MouseListener (& implement mousePressed,
mouseReleased, & mouseClicked) or
• extend MouseAdapter (which has default implementations of all 3)

• Second is easier unless class already extends another. Can
only extend one class in Java
• Similarly, for mouse motion listener
• implement MouseMotionListener or
• extend MouseMotionAdapter

9/4/17

8

GUI Objects & Events
• Similar to handling mouse events, but must also install

components in a container.

• See GUI cheat sheet in Documentation & Handouts.

Listeners in PostItApplication
• Main class (this) is listener for button and choice. Set up when

GUI items constructed

• Special listener objects for mouse actions. Set up by
DrawingCanvas since listening for actions on that object.

List Operations

• Review list operations from library interface List in Java 8
documentation.
• Bailey’s List is slightly different.

• Think about how to implement with array.

• size, isEmpty, get, set functions

ArrayList
• See Bailey’s ArrayIndexList
• Similar to Java 8’s ArrayList
• Instance variables:

• elts: array instance variable,
• eltsFilled: number of slots filled.

• Some operations very cheap:
• size, isEmpty, get, set take constant time (no search)

• Others more expensive

