Lecture 28: More Parallelism

CS 62
Fall 2017
Kim Bruce & Alexandra Papoutsaki

Some slides based on those from Dan Grossman,
U. of Washington

New CS Curriculum

* Being phased in
* Multiple 515 in different languages

* CS 52 and 55 replaced by 54: Discrete Math & Functional
Programming

e CS 62 not assume Java (S'19), not teach C (now)
e CS 105 will teach C

o Changes later to other advanced courses

e Won't affect you

History

e Writing correct and efficient multithread code
is more difficult than for single-threaded
(sequential).

* From roughly 1980-2005, desktop computers
got exponentially faster at running sequential
programs

* About twice as fast every 18 months to 2 years

More History

* Nobody knows how to continue this
* Increasing clock rate generates too much heat
* Relative cost of memory access is too high

* Can keep making “wires exponentially
smaller” (Moore’s “Law”), so put multiple
processors on the same chip (“multicore”)

e Now double number of cores every 2 years!

40 Years of Microprocessor Trend Data

7
10 : ! ! Tk Transistors
108 L ” (thousands)

REYY Yo)
10° F I WY - | Single-Thread
v > Performance
10* .;f",‘...!!?.’-.’..‘f&] (SPECINT x 10°
e :‘if \“ ||*‘H‘ Frequency (MH
10° | Aéx...c;‘:ﬂ H PR
- Q:LI . R Typical Power
10? Bt gy Sy W R T Lo (Watts)
A L) Y, v

1 - 'v:v! ¥ v o::o'f Number of
100 == I ¢ z“ ¢ 7 Logical Cores
100 Aom S 4 ¥ cnoee
e .. R X R : - .

‘ 1 1 1 1
1970 1980 1990 2000 2010 2020

Year
Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2015 by K. Rupp

Analogy

* Typical CSr idea:
* Writing a program is like writing a recipe for one cook
who does one thing at a time!
* Parallelism:
e Hire helpers, hand out potatoes and knives

o But not too many chefs or you spend all your time
coordinating (or you'll get hurt!)

Shared Memory

Threads, each with own
unshared call stack and current
statement (pc for ‘program
counter”) local variables are

primitives/null or beap references

—

'% {111]

X ;Il ao -
X s

Heap for all objects and
static fields

Other Models

* Message-passing:

* Each thread has its own collection of objects.
Communication is via explicit messages; language has
primitives for sending and receiving them.

e Cooks working in separate kitchens, with telephones

e Dataflow:

* Programmers write programs in terms of a DAG and a
node executes after all of its predecessors in the graph

e Cooks wait to be handed results of previous steps

* Data parallelism:

e Have primitives for things like “apply function to every
element of an array in parallel”

CPU vs GPU

From Mythbusters:

https://www.youtube.com/watch?v=-
P28L.KWTzrl&feature=youtu.be

In a bit more detail-

https://’www.youtube.com/watch?v=1kypaBi]-pg

To Use Library

e Create a ForkJoinPool

¢ Instead of subclass Thread, subclass Recursive Task<V>
e Opverride compute, rather than run

* Return answer from compute rather than instance vble
e Call fork instead of start

 Call join that returns answer

o To optimize, call compute instead of fork (uther than
run)

e See ForkfoinFrameworkDivideConquerPSum

Getting Good Results

* Documentation recommends 100-50000 basic
ops in each piece of program

* Library needs to warm up, like rest of java, to
see good results

e Works best with more processors (> 4)

Similar Problems

* Speed up to O(log n) if divide and conquer and
merge results in time O(1).

e Other examples:

¢ Find max, min

Find (leftmost) elt satisfying some property
o Count elts satisfying some property

* Histogram of test results
o Called reductions

* Won't work if answer to 1 subproblem depends
on another (e.g. one to left)

Program Graph

e Program using fork and join can be seen as
directed acyclic graph (DAG).

e Nodes: pieces of work

* Edges: dependencies - source must finish before start
destination

fork
/ * Fork command finishes node and makes two edges out:
7N ® New thread & continuation of old

N/
\\

* Join ends node & makes new node w/ 2 edges coming in

T join

Performance

* Let Tp be running time if there are P processors
* Work =T\ = sum of run-time of all nodes in DAG

* Span = T. = sum of run-time of all nodes on most
expensive path in DAG

* Speed-up on P processors =T,/Tp

What does it mean?

e Guarantee: Tp = O(T,/P)+T_)

« No implementation can beat O(T) by more than
constant factor.

e No implementation on P processors can beat O((T, / P)
* So framework on average gives best can do, assuming
user did best possible.
* Bottom line:

e Focus on your algos, data structures, & cut-offs rather
than # processors and scheduling.

e Justneed T,, T _, and P to analyze running time

Examples

e Recall: Tp = O(T,/P)+T_)

* For summing:
e T,=0()
e T..=0(ogn)
* So expect Tp = O(n/P + log n)

e If instead:
e T,=0(>
e T.=0(m)
o Then expect Ty = O(n2/P + n)

Amdahl’s Law

* Upper bound on speed-up!

* Suppose the work (time to run w/one processor) is 1 unit
time.

Let S be portion of execution that cannot be parallelized
T:=S+G@-9=1

* Suppose get perfect speedup on parallel portion.
o Tp=S+GS/P

Then overall speedup with P processors (Amdahl’s law):
o T/Tp=1/(S+GS/P)
e Parallelism (e processors) is: T;/ T =1/S

Bad News!

.TI/Tsz/S

* If 33% of program is sequential, then millions of
processors won't give speedup over 3.

* From 1980 - 2005, every 12 years gave 100x speedup

e Now suppose clock speed is same but 256 processors instead
of 1.

 To get 100x speedup, need 100 < 1/(S + (1-S)/P)

e Solve to get solution S < .0061, so need 99.4% perfectly
parallel.

Moral

* May not be able to speed up existing algos
much, but might find new parallel algos.
e Can change what we compute

e Computer graphics now much better in video games
with GPU’s -- not much faster, but much more detail.

