
Lecture 28: More Parallelism
CS 62

Fall 2017
Kim Bruce & Alexandra Papoutsaki

Some slides based on those from Dan Grossman,
U. of Washington

New CS Curriculum

• Being phased in
• Multiple 51s in different languages

• CS 52 and 55 replaced by 54: Discrete Math & Functional
Programming

• CS 62 not assume Java (S’19), not teach C (now)

• CS 105 will teach C

• Changes later to other advanced courses
• Won’t affect you

History

• Writing correct and efficient multithread code
is more difficult than for single-threaded
(sequential).

• From roughly 1980-2005, desktop computers
got exponentially faster at running sequential
programs
• About twice as fast every 18 months to 2 years

More History

• Nobody knows how to continue this

• Increasing clock rate generates too much heat

• Relative cost of memory access is too high

• Can keep making “wires exponentially
smaller” (Moore’s “Law”), so put multiple
processors on the same chip (“multicore”)

• Now double number of cores every 2 years!

Analogy

• Typical CS1 idea:
• Writing a program is like writing a recipe for one cook

who does one thing at a time!

• Parallelism:
• Hire helpers, hand out potatoes and knives

• But not too many chefs or you spend all your time
coordinating (or you’ll get hurt!)

Shared Memory

…

pc=0x…

…

pc=0x…

…

pc=0x…

…

Threads, each with own
unshared call stack and current
statement (pc for “program
counter”) local variables are
primitives/null or heap references

Heap for all objects and
static fields

Other Models
• Message-passing:

• Each thread has its own collection of objects.
Communication is via explicit messages; language has
primitives for sending and receiving them.

• Cooks working in separate kitchens, with telephones

• Dataflow:
• Programmers write programs in terms of a DAG and a

node executes after all of its predecessors in the graph

• Cooks wait to be handed results of previous steps

• Data parallelism:
• Have primitives for things like “apply function to every

element of an array in parallel”

CPU vs GPU

https://www.youtube.com/watch?v=1kypaBjJ-pg
In a bit more detail:

https://www.youtube.com/watch?v=-
P28LKWTzrI&feature=youtu.be

From Mythbusters:

To Use Library

• Create a ForkJoinPool

• Instead of subclass Thread, subclass RecursiveTask<V>

• Override compute, rather than run

• Return answer from compute rather than instance vble

• Call fork instead of start

• Call join that returns answer

• To optimize, call compute instead of fork (rather than
run)

• See ForkJoinFrameworkDivideConquerPSum

Getting Good Results

• Documentation recommends 100-50000 basic
ops in each piece of program

• Library needs to warm up, like rest of java, to
see good results

• Works best with more processors (> 4)

Similar Problems
• Speed up to O(log n) if divide and conquer and

merge results in time O(1).

• Other examples:
• Find max, min

• Find (leftmost) elt satisfying some property

• Count elts satisfying some property

• Histogram of test results

• Called reductions

• Won’t work if answer to 1 subproblem depends
on another (e.g. one to left)

Program Graph

• Program using fork and join can be seen as
directed acyclic graph (DAG).
• Nodes: pieces of work

• Edges: dependencies - source must finish before start
destination

• Fork command finishes node and makes two edges out:
• New thread & continuation of old

• Join ends node & makes new node w/ 2 edges coming in

fork

join

Performance

• Let TP be running time if there are P processors

• Work = T1 = sum of run-time of all nodes in DAG

• Span = T∞ = sum of run-time of all nodes on most
expensive path in DAG

• Speed-up on P processors = T1/TP

What does it mean?

• Guarantee: TP = O((T1 / P) + T ∞)
• No implementation can beat O(T ∞) by more than

constant factor.

• No implementation on P processors can beat O((T1 / P)

• So framework on average gives best can do, assuming
user did best possible.

• Bottom line:
• Focus on your algos, data structures, & cut-offs rather

than # processors and scheduling.

• Just need T1, T ∞, and P to analyze running time

Examples

• Recall: TP = O((T1 / P) + T ∞)

• For summing:
• T1 = O(n)

• T∞ = O(log n)

• So expect Tp = O(n/P + log n)

• If instead:
• T1 = O(n2)

• T∞ = O(n)

• Then expect Tp = O(n2/P + n)

Amdahl’s Law

• Upper bound on speed-up!
• Suppose the work (time to run w/one processor) is 1 unit

time.

• Let S be portion of execution that cannot be parallelized

• T1 = S + (1 - S) = 1

• Suppose get perfect speedup on parallel portion.
• TP = S + (1-S) / P

• Then overall speedup with P processors (Amdahl’s law):
• T1 / TP = 1 / (S + (1-S) / P)

• Parallelism (∞ processors) is: T1 / T∞ = 1 / S

Bad News!

• T1 / T∞ = 1 / S

• If 33% of program is sequential, then millions of
processors won’t give speedup over 3.

• From 1980 - 2005, every 12 years gave 100x speedup
• Now suppose clock speed is same but 256 processors instead

of 1.

• To get 100x speedup, need 100 ≤ 1/(S + (1-S)/P)

• Solve to get solution S ≤ .0061, so need 99.4% perfectly
parallel.

Moral

• May not be able to speed up existing algos
much, but might find new parallel algos.

• Can change what we compute
• Computer graphics now much better in video games

with GPU’s -- not much faster, but much more detail.

