Lecture 28: More Parallelism

CS 62 Fall 2017 Kim Bruce & Alexandra Papoutsaki

Some slides based on those from Dan Grossman, U. of Washington

New CS Curriculum

- Being phased in
 - Multiple 51s in different languages
 - CS 52 and 55 replaced by 54: Discrete Math & Functional Programming
 - CS 62 not assume Java (S'19), not teach C (now)
 - CS 105 will teach C
 - Changes later to other advanced courses
 - Won't affect you

History

- Writing correct and efficient multithread code is more difficult than for single-threaded (sequential).
- From roughly 1980-2005, desktop computers got exponentially faster at running sequential programs
 - About twice as fast every 18 months to 2 years

More History

- Nobody knows how to continue this
- Increasing clock rate generates too much heat
- Relative cost of memory access is too high
- Can keep making "wires exponentially smaller" (Moore's "Law"), so put multiple processors on the same chip ("multicore")
- Now double number of cores every 2 years!

Analogy Typical CS1 idea: Writing a program is like writing a recipe for one cook who does one thing at a time! Parallelism: Hire helpers, hand out potatoes and knives But not too many chefs or you spend all your time coordinating (or you'll get burt!)

Other Models

• Message-passing:

- Each thread has its own collection of objects. Communication is via explicit messages; language has primitives for sending and receiving them.
- Cooks working in separate kitchens, with telephones

• Dataflow:

- Programmers write programs in terms of a DAG and a node executes after all of its predecessors in the graph
- Cooks wait to be handed results of previous steps
- Data parallelism:
 - Have primitives for things like "apply function to every element of an array in parallel"

CPU vs GPU

From Mythbusters:

https://www.youtube.com/watch?v=-P28LKWTzrI&feature=youtu.be

In a bit more detail:

https://www.youtube.com/watch?v=IkypaBjJ-pg

To Use Library

- Create a ForkJoinPool
- Instead of subclass Thread, subclass RecursiveTask<V>
- Override compute, rather than run
- Return answer from compute rather than instance vble
- Call fork instead of start
- Call join that returns answer
- To optimize, call compute instead of fork (*rather than run*)
- See ForkJoinFrameworkDivideConquerPSum

Getting Good Results

- Documentation recommends 100-50000 basic ops in each piece of program
- Library needs to warm up, like rest of java, to see good results
- Works best with more processors (> 4)

Similar Problems

- Speed up to O(log n) if divide and conquer and merge results in time O(1).
- Other examples:
 - Find max, min
 - Find (leftmost) elt satisfying some property
 - Count elts satisfying some property
 - Histogram of test results
 - Called *reductions*
- Won't work if answer to 1 subproblem depends on another (e.g. one to left)

Program Graph

- Program using fork and join can be seen as directed acyclic graph (DAG).
 - Nodes: pieces of work

fork

ioin

- Edges: dependencies source must finish before start destination
 - Fork command finishes node and makes two edges out:
 New thread & continuation of old
 - $\bullet\,$ Join ends node & makes new node w/ 2 edges coming in

Performance

- Let T_P be running time if there are P processors
- Work = T₁ = sum of run-time of all nodes in DAG
- Span = T_{∞} = sum of run-time of all nodes on most expensive path in DAG
- Speed-up on P processors = T_I/T_P

What does it mean?

- Guarantee: $T_P = O((T_I / P) + T_\infty)$
 - No implementation can beat $O(T_{\omega})$ by more than constant factor.
 - No implementation on P processors can be t $O((T_r / P)$
 - So framework on average gives best can do, assuming user did best possible.
- Bottom line:
 - Focus on your algos, data structures, & cut-offs rather than # processors and scheduling.
 - Just need T_{I}, T_{∞} , and P to analyze running time

Examples

- Recall: $T_P = O((T_1 / P) + T_{\infty})$
- For summing:
 - T₁ = O(n)
 - T_∞ = O(log n)
 - So expect $T_p = O(n/P + \log n)$
- If instead:
 - $T_{I} = O(n^2)$
 - T_∞ = O(n)
 - Then expect $T_p = O(n^2/P + n)$

Amdahl's Law

- Upper bound on speed-up!
 - Suppose the work (time to run w/one processor) is 1 unit time.
 - Let S be portion of execution that cannot be parallelized
 - $T_{I} = S + (I S) = I$
 - Suppose get perfect speedup on parallel portion.
 - $T_P = S + (I-S) / P$
 - Then overall speedup with P processors (Amdahl's law):
 - $T_{I}/T_{P} = I/(S + (I-S)/P)$
 - Parallelism (∞ processors) is: $T_1/T_{\infty} = 1/S$

Bad News!

- $T_I / T_\infty = I / S$
- If 33% of program is sequential, then millions of processors won't give speedup over 3.
- From 1980 2005, every 12 years gave 100x speedup
 - Now suppose clock speed is same but 256 processors instead of 1.
 - To get 100x speedup, need 100 \leq 1/(S + (1-S)/P)
 - Solve to get solution S \leq .0061, so need 99.4% perfectly parallel.

Moral

- May not be able to speed up existing algos much, but might find new parallel algos.
- Can change what we compute
 - Computer graphics now much better in video games with GPU's -- not much faster, but much more detail.