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New CS Curriculum

• Being phased in
• Multiple 51s in different languages

• CS 52 and 55 replaced by 54: Discrete Math & Functional 
Programming

• CS 62 not assume Java (S’19), not teach C (now)

• CS 105 will teach C

• Changes later to other advanced courses
• Won’t affect you

History

• Writing correct and efficient multithread code 
is more difficult than for single-threaded 
(sequential).

• From roughly 1980-2005, desktop computers 
got exponentially faster at running sequential 
programs
• About twice as fast every 18 months to 2 years

More History

• Nobody knows how to continue this

• Increasing clock rate generates too much heat

• Relative cost of memory access is too high

• Can keep making “wires exponentially 
smaller” (Moore’s “Law”), so put multiple 
processors on the same chip (“multicore”)

• Now double number of cores every 2 years!



Analogy

• Typical CS1 idea: 
• Writing a program is like writing a recipe for one cook 

who does one thing at a time!

• Parallelism:
• Hire helpers, hand out potatoes and knives

• But not too many chefs or you spend all your time 
coordinating (or you’ll get hurt!)

Shared Memory
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Threads, each with own
unshared call stack and current
statement (pc for “program 
counter”) local variables are 
primitives/null or heap references

Heap for all objects and 
static fields

Other Models
• Message-passing: 

• Each thread has its own collection of objects.  
Communication is via explicit messages; language has 
primitives for sending and receiving them.

• Cooks working in separate kitchens, with telephones

• Dataflow: 
• Programmers write programs in terms of a DAG and a 

node executes after all of its predecessors in the graph

• Cooks wait to be handed results of previous steps

• Data parallelism: 
• Have primitives for things like “apply function to every 

element of an array in parallel”



CPU vs GPU

https://www.youtube.com/watch?v=1kypaBjJ-pg
In a bit more detail:

https://www.youtube.com/watch?v=-
P28LKWTzrI&feature=youtu.be

From Mythbusters:

To Use Library

• Create a ForkJoinPool

• Instead of subclass Thread, subclass RecursiveTask<V>

• Override compute, rather than run

• Return answer from compute rather than instance vble

• Call fork instead of start

• Call join that returns answer

• To optimize, call compute instead of fork (rather than 
run)

• See ForkJoinFrameworkDivideConquerPSum

Getting Good Results

• Documentation recommends 100-50000 basic 
ops in each piece of program

• Library needs to warm up, like rest of java, to 
see good results

• Works best with more processors (> 4)

Similar Problems
• Speed up to O(log n) if divide and conquer and 

merge results in time O(1).

• Other examples:
• Find max, min

• Find (leftmost) elt satisfying some property

• Count elts satisfying some property

• Histogram of test results

• Called reductions

• Won’t work if answer to 1 subproblem depends 
on another (e.g. one to left)



Program Graph

• Program using fork and join can be seen as 
directed acyclic graph (DAG).
• Nodes: pieces of work

• Edges: dependencies - source must finish before start 
destination

•  Fork command finishes node and makes two edges out:
•  New thread & continuation of old

•  Join ends node & makes new node w/ 2 edges coming in

fork

join

Performance

• Let TP be running time if there are P processors 

• Work = T1 = sum of run-time of all nodes in DAG

• Span = T∞ = sum of run-time of all nodes on most 
expensive path in DAG

• Speed-up on P processors = T1/TP

What does it mean?

• Guarantee:  TP  =  O((T1 / P) + T ∞)
• No implementation can beat O( T ∞) by more than 

constant factor.

• No implementation on P processors can beat O((T1 / P)

• So framework on average gives best can do, assuming 
user did best possible.

• Bottom line:  
• Focus on your algos, data structures, & cut-offs rather 

than # processors and scheduling.

• Just need T1, T ∞, and P to analyze running time

Examples

• Recall: TP  =  O((T1 / P) + T ∞)

• For summing:
• T1 = O(n)

• T∞ = O(log n)

• So expect Tp = O(n/P + log n)

• If instead:
• T1 = O(n2)

• T∞ = O(n)

• Then expect Tp = O(n2/P + n)



Amdahl’s Law

• Upper bound on speed-up!
• Suppose the work (time to run w/one processor) is 1 unit 

time.

• Let S be portion of execution that cannot be parallelized

• T1 = S + (1 - S) = 1

• Suppose get perfect speedup on parallel portion.
• TP = S + (1-S) / P

• Then overall speedup with P processors (Amdahl’s law):
• T1 / TP = 1 / (S + (1-S) / P)

• Parallelism (∞ processors) is: T1 / T∞ = 1 / S

Bad News!

• T1 / T∞ = 1 / S

• If 33% of program is sequential, then millions of 
processors won’t give speedup over 3.

• From 1980 - 2005, every 12 years gave 100x speedup
• Now suppose clock speed is same but 256 processors instead 

of 1.

• To get 100x speedup, need 100 ≤ 1/(S + (1-S)/P)

• Solve to get solution S ≤ .0061, so need 99.4% perfectly 
parallel.

Moral

• May not be able to speed up existing algos 
much, but might find new parallel algos.

• Can change what we compute
• Computer graphics now much better in video games 

with GPU’s -- not much faster, but much more detail.


