Lecture 27: Parallelism &
Concurrency

CS 62
Fall 2017
Kim Bruce & Alexandra Papoutsaki

Some slides based on those from Dan Grossman,

U. of Washington

Parallelism & Concurrency

* Single-processor computers geing gone away.

e Hit a wall in terms of speed!

* Want to use separate processors to speed up computing
by using them in parallel.

* Also have programs on single processor running in
multiple threads. Want to control them so that program
is responsive to user: Concurrency

¢ Often need concurrent access to data structures (e.g.,
event queue). Need to ensure don’t interfere w/each
other.

What can you do with
multiple cores?

e Run multiple totally different programs at the
same time

o Already do that? Yes, but with time-slicing

* Do multiple things at once in one program
* Our focus — more difficult

* Requires rethinking everything from asymptotic
complexity to how to implement data-structure
operations

Models Change

e Model: Shared memory w/explicit threads

 Program on single processor:
* One call stack:
e each stack frame holds local variables and references to parameters
¢ One program counter (current statement executing)

e Static fields

e Objects (created by new) in the heap (nothing to do with
heap data structure)




Multiple Theads/Processors

e New story:

o A set of threads, each with its own call stack & program
counter

e No access to another thread’s local variables
 Threads can (implicitly) share static fields / objects

e To communicate, write somewhere another thread reads

Shared Memory

Threads, each with own
unshared call stack and current
statement (pc for program Heap for all objects and
coqntferj’ﬁ local variables are static fields
primitives/null or beap references

Parallelism in Java

Parallel Programming in Java

* Creating a thread:
1. Define a class C extending Thread

e Opverride public void run() method
2. Create object of class C

3. Call that thread’s start method
® Creates new thread and starts executing run method.
e Direct call of run won’t work, as just be a normal method call
®  Same kind of issue as paint-repaint!

° Alternatively, define class implementing Runnable, create

thread w/it as parameter, and send start message
Allows class to extend a different one.




Parallelism Idea

J T J T
ans0 ansl ans2 ans3
T
ans

* Example: Sum elements of an array

* Use 4 threads, which each sum 1/4 of the array

e Steps:

e Create 4 thread objects, assigning each their portion of
the work

e Call start( on each thread object to actually run it
e Wait for threads to finish

e Add together their 4 answers for the final result

First Attempt

class SumThread extends Thread {
int lo, int hi, int[] arr;//fields to know what to do
int ans = 0; // for communicating result
SumThread(int[] a, int 1, int h) { .. }
// add a[l] to a[h]
public void run(){ .. }
' What'’s wrong?
int sum(int[] arr){
int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4];
for(int i=0; i < 4; i++){// do parallel computations
ts[i] = new SumThread(arr,i*len/4,(i+l)*len/4);
ts[i].start(); // use start not run
}
for(int i=0; i < 4; i++) // combine results
ans += ts[i].ans;
return ans;

Correct Version

class SumThread extends Thread {
int lo, int hi, int[] arr;//fields to know what to do
int ans = 0; // for communicating result
SumThread(int[] a, int 1, int h) { .. }
public void run(){ .. }

}

int sum(int[] arr){

int len = arr.length;

int ans = 0;

SumThread[] ts = new SumThread[4];

for(int i=0; i < 4; i++){// do parallel computations
ts[i] = new SumThread(arr,i*len/4,(i+l)*len/4);
ts[i].start(); // start not run

}

for(int i=0; i < 4; i++) // combine results
ts[i].join(); // wait for helpers to finish!
ans += ts[i].ans;

return ans;

} See program ParallelSum

Thread Class Methods

* void start(), which calls void run()
* void join() - blocks until receiver thread done

* Style called fork/join parallelism

* Need try-catch around join as it can throw exception
InterruptedException

* Some memory sharing: array is shared

* Later learn how to protect using synchronized.




Actually not so great.

* If do timing, it’s slower than sequential!!

e Want code to be reusable and efficient as core
count grows.

o At minimum, make #threads a parameter.

* Want to effectively use processors available
now
e Not being used by other programs

e Can change while your threads running

Problem

® Suppose 4 processors on computer

* Suppose have problem of size n

* can solve w/3 processors each taking time t on n/3 elts.

e Suppose linear in size of problem.

e 'Try to use 4 threads, but one processor busy playing
music.
o First 3 threads run, but 4th waits.
o First 3 threads scheduled & take time ((n/4)/(n/3))*t = 3/4 t
e After 1st 3 finish, run 4th & takes another 3/4 t

e Total time 1.5 * t , runs 50% slower than with 3 threads!!!

Other Possible Problems

* On some problems, different threads may take
significantly different times to complete

* Imagine applying f to all members of an array,
where f applied to some elts takes a long time

e If unlucky, all the slow elts may get assigned to
same thread.

e Certainly won't see n time speedup w/ n threads.

* May be much worse! Load imbalance problem!

Other Possible Problems

e May not have as many processors available as
threads

¢ On some problems, different threads may take
significantly different times to complete




Toward a Solution

* To avoid having to wait too long for any one
thread, instead create lots of threads

e Schedule threads as processors become
available.

* If 1 thread very slow, many others will get
scheduled on other processors while that one
runs.

e Will work well if slow thread scheduled
relatively early.

Divide & Conquer

LTI T T T T T LTI T T I T T T TT LI TTIT T
L
S~

WoON Y A\ N

~4 ~ ~
\+/ \+/
—_—

e Divide in half, w/ one thread per half.
e Each half further subdivided w/ new threads, etc.
e Depth is O(log n), which is optimal
o If have numProc processors then total time

O(n/numProc + log n)

straight-line code cost each layer is O(1) in parallel
instep 1

In practice

* Creating all threads and communication
swamps savings so

* use sequential cutoff about 500

e Don’t create two recursive threads
¢ one new and reuse old.

o Cuts number of threads in half.

EfficentDivideConguerParallelSum

Even Better

e Java threads too heavyweight -- space and time
overhead.

* ForkJoin Framework solves problems

* Standard as of Java 7.




To Use Library

e Create a ForkJoinPool

¢ Instead of subclass Thread, subclass Recursive Task<V>
e Override compute, rather than run

e Return answer from compute rather than instance vble
e Call fork instead of start

e Call join that returns answer

 To optimize, call compute instead of fork (rather than
run)

e See ForkfoinFrameworkDivideConquerPSum

Getting Good Results

* Documentation recommends 100-50000 basic
ops in each piece of program

* Library needs to warm up, like rest of java, to
see good results

* Works best with more processors (> 4)

Similar Problems

* Speed up to O(log n) if divide and conquer and
merge results in time O(1).

e Other examples:

¢ Find max, min

Find (leftmost) elt satisfying some property
o Count elts satisfying some property

* Histogram of test results
o Called reductions

* Won't work if answer to 1 subproblem depends
on another (e.g. one to left)




