
Lecture 27: Parallelism &
Concurrency

CS 62
Fall 2017

Kim Bruce & Alexandra Papoutsaki

Some slides based on those from Dan Grossman,
U. of Washington

Parallelism & Concurrency

• Single-processor computers going gone away.
• Hit a wall in terms of speed!

• Want to use separate processors to speed up computing
by using them in parallel.

• Also have programs on single processor running in
multiple threads. Want to control them so that program
is responsive to user: Concurrency

• Often need concurrent access to data structures (e.g.,
event queue). Need to ensure don’t interfere w/each
other.

What can you do with
multiple cores?

• Run multiple totally different programs at the
same time
• Already do that? Yes, but with time-slicing

• Do multiple things at once in one program
• Our focus – more difficult

• Requires rethinking everything from asymptotic
complexity to how to implement data-structure
operations

Models Change

• Model: Shared memory w/explicit threads

• Program on single processor:
• One call stack:

• each stack frame holds local variables and references to parameters

• One program counter (current statement executing)

• Static fields

• Objects (created by new) in the heap (nothing to do with
heap data structure)

Multiple Theads/Processors

• New story:
• A set of threads, each with its own call stack & program

counter

• No access to another thread’s local variables

• Threads can (implicitly) share static fields / objects

• To communicate, write somewhere another thread reads

Shared Memory

…

pc=0x…

…

pc=0x…

…

pc=0x…
…

Threads, each with own
unshared call stack and current
statement (pc for “program
counter”) local variables are
primitives/null or heap references

Heap for all objects and
static fields

Parallelism in Java

Parallel Programming in Java

• Creating a thread:
1. Define a class C extending Thread

• Override public void run() method

2. Create object of class C

3. Call that thread’s start method
• Creates new thread and starts executing run method.
• Direct call of run won’t work, as just be a normal method call
• Same kind of issue as paint-repaint!

• Alternatively, define class implementing Runnable, create
thread w/it as parameter, and send start message

Allows class to extend a different one.

Parallelism Idea

• Example: Sum elements of an array
• Use 4 threads, which each sum 1/4 of the array

• Steps:
• Create 4 thread objects, assigning each their portion of

the work

• Call start() on each thread object to actually run it

• Wait for threads to finish

• Add together their 4 answers for the final result

 ans0 ans1 ans2 ans3
 +
 ans

First Attempt
class SumThread extends Thread {
 int lo, int hi, int[] arr;//fields to know what to do
 int ans = 0; // for communicating result
 SumThread(int[] a, int l, int h) { … }
 // add a[l] to a[h]
 public void run(){ … }
}

int sum(int[] arr){
 int len = arr.length;
 int ans = 0;
 SumThread[] ts = new SumThread[4];
 for(int i=0; i < 4; i++){// do parallel computations
 ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
 ts[i].start(); // use start not run
 }
 for(int i=0; i < 4; i++) // combine results
 ans += ts[i].ans;
 return ans;
}

What’s wrong?

Correct Version
class SumThread extends Thread {
 int lo, int hi, int[] arr;//fields to know what to do
 int ans = 0; // for communicating result
 SumThread(int[] a, int l, int h) { … }
 public void run(){ … }
}

int sum(int[] arr){
 int len = arr.length;
 int ans = 0;
 SumThread[] ts = new SumThread[4];
 for(int i=0; i < 4; i++){// do parallel computations
 ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
 ts[i].start(); // start not run
 }
 for(int i=0; i < 4; i++) // combine results
 ts[i].join(); // wait for helpers to finish!
 ans += ts[i].ans;
 return ans;
} See program ParallelSum

Thread Class Methods

• void start(), which calls void run()

• void join() -- blocks until receiver thread done

• Style called fork/join parallelism
• Need try-catch around join as it can throw exception 

 InterruptedException

• Some memory sharing: array is shared

• Later learn how to protect using synchronized.

Actually not so great.

• If do timing, it’s slower than sequential!!

• Want code to be reusable and efficient as core
count grows.
• At minimum, make #threads a parameter.

• Want to effectively use processors available
now
• Not being used by other programs

• Can change while your threads running

Problem
• Suppose 4 processors on computer

• Suppose have problem of size n
• can solve w/3 processors each taking time t on n/3 elts.

• Suppose linear in size of problem.
• Try to use 4 threads, but one processor busy playing

music.

• First 3 threads run, but 4th waits.
• First 3 threads scheduled & take time ((n/4)/(n/3))*t = 3/4 t
• After 1st 3 finish, run 4th & takes another 3/4 t

• Total time 1.5 * t , runs 50% slower than with 3 threads!!!

Other Possible Problems

• On some problems, different threads may take
significantly different times to complete

• Imagine applying f to all members of an array,
where f applied to some elts takes a long time

• If unlucky, all the slow elts may get assigned to
same thread.
• Certainly won’t see n time speedup w/ n threads.

• May be much worse! Load imbalance problem!

Other Possible Problems

• May not have as many processors available as
threads

• On some problems, different threads may take
significantly different times to complete

Toward a Solution

• To avoid having to wait too long for any one
thread, instead create lots of threads

• Schedule threads as processors become
available.

• If 1 thread very slow, many others will get
scheduled on other processors while that one
runs.

• Will work well if slow thread scheduled
relatively early.

Divide & Conquer

• Divide in half, w/ one thread per half.
• Each half further subdivided w/ new threads, etc.

• Depth is O(log n), which is optimal

• If have numProc processors then total time 
 O(n/numProc + log n)

+ + + + + + + +

+ + + +

+ +
+

straight-line code cost
in step 1

each layer is O(1) in parallel

In practice

• Creating all threads and communication
swamps savings so
• use sequential cutoff about 500

• Don’t create two recursive threads
• one new and reuse old.

• Cuts number of threads in half.

EfficentDivideConquerParallelSum

Even Better

• Java threads too heavyweight -- space and time
overhead.

• ForkJoin Framework solves problems

• Standard as of Java 7.

To Use Library

• Create a ForkJoinPool

• Instead of subclass Thread, subclass RecursiveTask<V>

• Override compute, rather than run

• Return answer from compute rather than instance vble

• Call fork instead of start

• Call join that returns answer

• To optimize, call compute instead of fork (rather than
run)

• See ForkJoinFrameworkDivideConquerPSum

Getting Good Results

• Documentation recommends 100-50000 basic
ops in each piece of program

• Library needs to warm up, like rest of java, to
see good results

• Works best with more processors (> 4)

Similar Problems
• Speed up to O(log n) if divide and conquer and

merge results in time O(1).

• Other examples:
• Find max, min

• Find (leftmost) elt satisfying some property

• Count elts satisfying some property

• Histogram of test results

• Called reductions

• Won’t work if answer to 1 subproblem depends
on another (e.g. one to left)

