Lecture 24: Balanced Binary Search Trees

CS 62

Fall 2017 Kim Bruce & Alexandra Papoutsaki

Friday Quiz

- Ordered Structures
- Binary Search Trees
- Splay trees from today!

Removing nodes in BSTs

- Calling remove(E val) removes node with value val
- Predecessor of root becomes new root
 - Predecessor is in left subtree
 - Predecessor has no right subtree
 - Complexity is O(h) where h is height of tree
 - Worst-case O(h) to locate
 - Worst-case O(h) to find predecessor

Complexity

- locate, add, contains, remove are all O(h)
- Can we guarantee that h is O(log n)?
 - Only if tree stays balanced!!
- Binary search trees that stay balanced
 - AVL trees
 - Red-black trees
- We'll do splay tree, which doesn't guarantee balance
 - but guarantees good average behavior
 - easier to understand than alternatives
 - better than others if likely to go back to recent nodes

Rotating Trees

Key idea: Rotate node higher in tree while keeping it in order.

Rotating Trees

Rotate x to root, while maintain BST structure

- All nodes in subtree A go up one level, all in C go down one level, all in B stay same.
- See code in BinaryTree.java

Shifting elements toward root

- Move x up two levels w/ two rotations
- If x is left child of a left child...

Shifting elements toward root

• If x is a right child of a left child...

Symmetric if interchangeable left and right

Splay Tree

- Idea behind splay tree:
 - Every time **contains**, **add** or **remove** an element x, move it to the root by a series of rotations.
 - Other elements rotate out of way while maintaining BST order.
- Splay tree are balanced
 - On average height is O(log n)
 - Worst case height is O(n)
 - All operations are on average O(log n)

Splay Tree - Theory vs Practice

- All that rotation is expensive
- Great theoretical properties
- Simple idea
- Worse performance than other balancing schemes

Fixing Sticks

- Simple "rotate-up" strategy doesn't fix sticks
- Splay operations:
 - Zig
 - Zig-zig
 - Zig-zag

Splay operations

- Zig: Rotate self once L/R (when you have no grandparent)
- Zig-zig: Rotate parent, then self (when you're L/L or R/R)
- Zig-zag: Rotate self, then self (when you're L/R or R/L)

Demo