Lecture 24: Balanced Binary Search Trees

$$
\text { CS } 62
$$

Fall 2017
Kim Bruce \& Alexandra Papoutsaki

Friday Quiz

- Ordered Structures
- Binary Search Trees
- Splay trees from today!

Removing nodes in BSTs

- Calling remove(E val) removes node with value val
- Predecessor of root becomes new root
- Predecessor is in left subtree
- Predecessor has no right subtree
- Complexity is $O(h)$ where h is height of tree
- Worst-case O(h) to locate
- Worst-case $O(h)$ to find predecessor

Complexity

- locate, add, contains, remove are all $O(h)$
- Can we guarantee that h is $O(\log n)$?
- Only if tree stays balanced!!
- Binary search trees that stay balanced
- AVL trees
- Red-black trees
- We'll do splay tree, which doesn't guarantee balance
- but guarantees good average behavior
- easier to understand than alternatives
- better than others if likely to go back to recent nodes

Rotating Trees

Key idea: Rotate node higher in tree while keeping it in order.

Rotating Trees

Rotate x to root, while maintain BST structure
All nodes in subtree A go up one level, all in C go down one level, all in B stay same.
See code in BinaryTree.java

Shifting elements toward root

- Move x up two levels w/ two rotations
- If x is left child of a left child...

Shifting elements toward root

- If x is a right child of a left child...

Symmetric if interchangeable left and right

Splay Tree

- Idea behind splay tree:
- Every time contains, add or remove an element x, move it to the root by a series of rotations.
- Other elements rotate out of way while maintaining BST order.
- Splay tree are balanced
- On average height is $O(\log n)$
- Worst case height is $O(n)$
- All operations are on average $O(\log n)$

Splay Tree - Theory vs Practice

- All that rotation is expensive
- Great theoretical properties
- Simple idea
- Worse performance than other balancing schemes

Fixing Sticks

- Simple "rotate-up" strategy doesn't fix sticks
- Splay operations:
- Zig
- Zig-zig
- Zig-zag

Splay operations

- Zig: Rotate self once L/R (when you have no grandparent)
- Zig-zig: Rotate parent, then self (when you're L/L or R/R)
- Zig-zag: Rotate self, then self (when you're L/R or R/L)

Splay Tree

Demo

