
CS 62
Fall 2017

Kim Bruce & Alexandra Papoutsaki

1

Lecture 24: Balanced Binary 
Search Trees



Friday Quiz

• Ordered Structures
• Binary Search Trees 
• Splay trees from today!

2



Removing nodes in BSTs

• Calling remove(E val) removes node with value 
val

• Predecessor of root becomes new root
• Predecessor is in left subtree
• Predecessor has no right subtree

• Complexity is O(h) where h is height of tree
• Worst-case O(h) to locate
• Worst-case O(h) to find predecessor

3



Complexity

• locate, add, contains, remove are all O(h)

• Can we guarantee that h is O(log n)?
• Only if tree stays balanced!! 

• Binary search trees that stay balanced
• AVL trees
• Red-black trees

• We’ll do splay tree, which doesn’t guarantee balance
• but guarantees good average behavior
• easier to understand than alternatives
• better than others if likely to go back to recent nodes

4



Rotating Trees

5

Key idea: Rotate node higher in tree while keeping it in order.14.5 Splay Trees 355

y

Left rotation

Right rotation

BA

C A

B C

y x

x

Figure 14.4 The relation between rotated subtrees.

but in all other ways, the tree remains the same. In particular, there is no
structural effect on the tree above the original location of node y. A left rotation
is precisely the opposite of a right rotation; these operations are inverses of each
other.

The code for rotating a binary tree about a node is a method of the
class. We show, here, ; a similar method performs a left Finally, a right

handed
method!

rotation.

For each rotation accomplished, the nonroot node moves upward by one
level. Making use of this fact, we can now develop an operation to splay a tree
at a particular node. It works as follows:



Rotating Trees

6

Rotate x to root, while maintain BST structure
All nodes in subtree A go up one level, all in C go down one level, all 
in B stay same.
See code in BinaryTree.java



Shifting elements toward root

• Move x up two levels w/ two rotations
• If x is left child of a left child…

7

356 Search Trees

(a)

(b)

g

p

x

x

p x

g

g

x

p

g

x

p

g

p

x

g p

Figure 14.5 Two of the rotation pairs used in the splaying operation. The other cases
are mirror images of those shown here.

• If x is the root, we are done.

• If x is a left (or right) child of the root, rotate the tree to the right (or left)
about the root. x becomes the root and we are done.

• If x is the left child of its parent p, which is, in turn, the left child of its
grandparent g, rotate right about g, followed by a right rotation about p
(Figure 14.5a). A symmetric pair of rotations is possible if x is a left child
of a left child. After double rotation, continue splay of tree at x with this
new tree.

• If x is the right child of p, which is the left child of g, we rotate left about
p, then right about g (Figure 14.5b). The method is similar if x is the left
child of a right child. Again, continue the splay at x in the new tree.

After the splay has been completed, the node x is located at the root of the
tree. If node x were to be immediately accessed again (a strong possibility),
the tree is clearly optimized to handle this situation. It is not the case that the
tree becomes more balanced (see Figure 14.5a). Clearly, if the tree is splayed at
an extremal value, the tree is likely to be extremely unbalanced. An interesting
feature, however, is that the depth of the nodes on the original path from x to
the root of the tree is, on average, halved. Since the average depth of these



Shifting elements toward root

• If x is a right child of a left child…

8

356 Search Trees

(a)

(b)

g

p

x

x

p x

g

g

x

p

g

x

p

g

p

x

g p

Figure 14.5 Two of the rotation pairs used in the splaying operation. The other cases
are mirror images of those shown here.

• If x is the root, we are done.

• If x is a left (or right) child of the root, rotate the tree to the right (or left)
about the root. x becomes the root and we are done.

• If x is the left child of its parent p, which is, in turn, the left child of its
grandparent g, rotate right about g, followed by a right rotation about p
(Figure 14.5a). A symmetric pair of rotations is possible if x is a left child
of a left child. After double rotation, continue splay of tree at x with this
new tree.

• If x is the right child of p, which is the left child of g, we rotate left about
p, then right about g (Figure 14.5b). The method is similar if x is the left
child of a right child. Again, continue the splay at x in the new tree.

After the splay has been completed, the node x is located at the root of the
tree. If node x were to be immediately accessed again (a strong possibility),
the tree is clearly optimized to handle this situation. It is not the case that the
tree becomes more balanced (see Figure 14.5a). Clearly, if the tree is splayed at
an extremal value, the tree is likely to be extremely unbalanced. An interesting
feature, however, is that the depth of the nodes on the original path from x to
the root of the tree is, on average, halved. Since the average depth of these

Symmetric if interchangeable left and right



Splay Tree

• Idea behind splay tree:
• Every time contains, add or remove an element x, move it 

to the root by a series of rotations.
• Other elements rotate out of way while maintaining BST 

order. 

• Splay tree are balanced
• On average height is O(log n)
• Worst case height is O(n)
• All operations are on average O(log n)

9



Splay Tree – Theory vs Practice

• All that rotation is expensive 
• Great theoretical properties 
• Simple idea 
• Worse performance than other balancing schemes

10



Fixing Sticks

• Simple “rotate-up” strategy doesn’t fix sticks 
• Splay operations: 
• Zig 
• Zig-zig 
• Zig-zag

11



Splay operations

• Zig: Rotate self once L/R 
(when you have no grandparent) 

• Zig-zig: Rotate parent, then self 
(when you’re L/L or R/R) 

• Zig-zag: Rotate self, then self 
(when you’re L/R or R/L)

12



Splay Tree

Demo

13


