Lecture 24: Balanced Binary
Search Trees

CS 62

Fall 2017
Kim Bruce & Alexandra Papoutsaki

Friday Quiz

« Ordered Structures
* Binary Search Trees
« Splay trees from today!

Removing nodes in BSTs

« Calling remove(E val) removes node with value
val

* Predecessor of root becomes new root

 Predecessoris in left subtree
* Predecessor has no right subtree

« Complexity is O(h) where h is height of tree
Worst-case O(h) to locate
Worst-case O(h) to find predecessor

Complexity

« locate, add, contains, remove are all O(h)

« Can we guarantee that h is O(log n)?
* Only if tree stays balanced!!

« Binary search trees that stay balanced
 AVLtrees
* Red-black trees

« We'll do splay tree, which doesn’t guarantee balance
* but guarantees good average behavior
» easier to understand than alternatives
* better than others if likely to go back to recent nodes

Rotating Trees

Key idea: Rotate node higher in tree while keeping it in order.

y X

e AN

Right rotation

A A
AL e AA

Rotating Trees

Rotate x to root, while maintain BST structure

All nodes in subtree A go up one level, all in C go down one level, all
in B stay same.

See code in BinaryTree.java

Right rotation

Shifting elements toward root

* Move x up two levels w/ two rotations

e Ifxis left child of a left child...

Shifting elements toward root

« Ifxis aright child of a left child...

Symmetric if interchangeable left and right

Splay Tree

« |Idea behind splay tree:

« Everytime contains, add or remove an element x, move it
to the root by a series of rotations.

« Other elements rotate out of way while maintaining BST
order.

« Splay tree are balanced
« On average heightis O(log n)
* Worst case heightis O(n)
« All operations are on average O(log n)

Splay Tree - Theory vs Practice

« All that rotation is expensive

* Great theoretical properties

* Simple idea

« Worse performance than other balancing schemes

10

Fixing Sticks

* Simple “rotate-up” strategy doesn't fix sticks
« Splay operations:

Zig

Zig-zig

Zig-zag

11

Splay operations

« Zig: Rotate self once L/R
(when you have no grandparent)

« Zig-zig: Rotate parent, then self
(when you're L/L or R/R)

« Zig-zag: Rotate self, then self
(when you're L/R or R/L)

12

Splay Tree

Demo

