
Lecture 21:
Heaps & Heapsort

CS 62
Fall 2017

Kim Bruce & Alexandra Papoutsaki

Lab Today

• Build binary search trees

• A binary tree is a binary search tree iff
• it is empty or

• if the value of every node is both greater than or equal to
every value in its left subtree and less than or equal to
every value in its right subtree.

• How do you build binary search tree?
• Insert by following from root until find empty slot

Different from heap!

Quiz Friday

• Array representations of trees

• Priority queues

• Heapsort

Array Representation of Trees
• data[0..n-1] can hold values in trees

• left subtree of node i in 2*i+1, right in 2*i+2,

• parent in (i-1)/2

Indices: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
 data[]: U O R C M E S - - - P T - - -

How bad can it be?
• What if long stringy tree (e.g. only single left-

most branch)?
• How much space to hold n elements.

• If complete what is height?

1

2

3

4

n

Slots: 0, 1, 3, 7, 15, 31, …, 2n-1-1
O(2n) space in worst case!

Min-Heap

• Min-Heap H is complete binary tree s.t.
• H is empty, or

• Both of the following hold:
• The value in root position is smallest value in H

• The left and right subtrees of H are also heaps. 
Equivalent to saying parent ≤ both left and right children

• Excellent implementation for priority queue
• Dequeue elements w/lowest priority values before higher

Implementations

• As regular queue (array or linked) where either
keep in order or search for lowest to remove:
• One of add or remove will be O(n)

• Heap representation (in arraylist) is more
efficient: O(log n) for both add and remove.
• Insert into heap:

• Place in next free position,
• “Percolate” it up.

• Delete:
• remove root,

• move last element in array up to root. “Push” it down.

See VectorHeap code!

Called PriorityQueue class in standard Java

Sorting with Trees

Tree Sort

• Build Binary search tree (later)

• Do Inorder traversal, adding elts to array
• Inorder traversal: O(n)

• Building tree:
• log 1 + log 2 + ... + log n = O(n log n) in best (& average) case
• O(n2) in worst case

• O(n log n) in best & average case

• O(n2) in worst case :-(What is worst case?

• Heapsort is always better!

Heapsort

• Make vector into a heap:
• n add operations = O(n log n)

• Remove elements in order
• n remove operations = O(n log n)

• Total: O(n log n)
• If clever can make into heap in O(n)

• ... but still O(n log n) total.

• O(1) extra space (for swaps)

Comparing Sorts

• Quicksort: fastest on average O(n log n), but
worst case is O(n2) & takes O(log n) extra space

• Heapsort: O(n log n) in average & worst case.
No extra space.
• Bit slower on average than quick & mergesorts.

• Mergesort: O(n log n) in average and worst
case. O(n) extra space.
• Performs well on external files where not all fit in

memory.

