
Lecture 20:
Heaps & Heapsort

CS 62
Fall 2017

Kim Bruce & Alexandra Papoutsaki

Memory Hierarchies

Access Time

Registers: Typical access time: One clock cycle.

Cache: Tens to hundreds of clock cycles.

Main Memory: Hundreds of clock cycles.

Secondary Memory: Millions of clock cycles.

Removable memory: Tens of millions of clock cycles

3 Ghz processor performs 3 billion clock cycles per second

Array Representation of Trees
• data[0..n-1] can hold values in trees

• left subtree of node i in 2*i+1, right in 2*i+2,

• parent in (i-1)/2

Indices: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
 data[]: U O R C M E S - - - P T - - -

Min-Heap

• Min-Heap H is complete binary tree s.t.
• H is empty, or

• Both of the following hold:
• The value in root position is smallest value in H

• The left and right subtrees of H are also heaps. 
Equivalent to saying parent ≤ both left and right children

• Excellent implementation for priority queue
• Dequeue elements w/lowest priority values before higher

PriorityQueue
public interface PriorityQueue<E extends Comparable<E>>
{

 /**
 * @pre !isEmpty()
 * @return The minimum value in the queue.
 */
 public E remove();
 public E getFirst();
 public void add(E value);
 public boolean isEmpty();
 public int size();
 public void clear();
}

Implementations

• As regular queue (array or linked) where either
keep in order or search for lowest to remove:
• One of add or remove will be O(n)

• Heap representation (in arraylist) is more
efficient: O(log n) for both add and remove.
• Insert into heap:

• Place in next free position,
• “Percolate” it up.

• Delete:
• remove root,

• move last element in array up to root. “Push” it down.

IndexRange: 0 1 2 3 4 5 6 7 8 9 10
 data: 10 20 14 31 40 45 60 32 33 47 -

IndexRange: 0 1 2 3 4 5 6 7 8 9 10
 data: 10 20 14 31 40 45 60 32 33 47 15

Insert 15:

IndexRange: 0 1 2 3 4 5 6 7 8 9 10
 data: 10 20 14 31 15 45 60 32 33 47 40

IndexRange: 0 1 2 3 4 5 6 7 8 9 10
 data: 10 15 14 31 20 45 60 32 33 47 40

Deleting from Heap

• Trickier!

• Remove top (smallest element)

• Move last element in array to top
• This is a large element!!

• “Push” it down while larger than either child
• Swap with smallest child if larger than it.

• What is worst case complexity?

See VectorHeap code

Called PriorityQueue class in standard Java

Sorting with Trees

Tree Sort

• Build Binary search tree (later)

• Do Inorder traversal, adding elts to array
• Inorder traversal: O(n)

• Building tree:
• log 1 + log 2 + ... + log n = O(n log n) in best (& average) case

• O(n2) in worst case

• O(n log n) in best & average case

• O(n2) in worst case :-(What is worst case?

• Heapsort is always better!

