
CS 62
Fall 2017

Kim Bruce & Alexandra Papoutsaki

1

Lecture 17: Binary Trees



Tree

• A tree is either:
• Empty or
• consists of a node, called the root node, together with a 

collection of trees, called its subtrees. These trees are 
disjoint from each other and the root.

2



Definitions

• An edge connects a node to its subtrees.
• The roots of the subtrees of a node are said 

to be the successors or descendants of the 
node.

• Nodes without successors are called leaves. 
The others are called interior nodes.

• All nodes except root have unique 
predecessor.

• A collection of trees is called a forest.
3



Example: Binary Search Tree

K, C, A, N, B, V, F, U, D, H, M

4



Expression Tree

5

[A*(B-C)]+(D/~E) 



Family Tree Terminology

6

• Parent node is directly above child node: 
• K is parent to C, N.

• Sibling node has same parent: 
• A, F

• K is ancestor of B
• B is descendant of K
• Node plus all descendants

gives subtree



More Terminology

7

• Simple path is series of distinct nodes 
s.t. there is edge between successive 
nodes.

• Path length = # edges in path
• Height of node = length of longest 

path to a leaf
• Height of tree = height of root
• Degree of node is # of children
• Degree of tree (arity) = max degree of 

any its nodes
• Binary tree has arity ≤ 2.



Even More Terminology

8

• Level/depth of node defined 
recursively:
• Root is at level 0
• Level of any other node is one greater 

than level of parent

• Level of node is also length of path 
from root to the node.



Counting

9

• Lemma: if 𝑇 is a binary tree, then at 
level 𝑘, 𝑇	has ≤ 	2𝑘	nodes.

• Theorem: If 𝑇 has height h, then # 
nodes in 𝑇	 ≤ 	2'() 	− 1.

• Equivalently, if 𝑇 has n nodes then 
𝑛	 − 	1	 ≥ 	ℎ	 ≥ 	log	(𝑛 + 1) 	− 	1



Binary Trees in Java

• No implementation in standard Java libraries
• Structure5 has BinaryTree<E> class, but no interface 

(though we provide one!).
• Like doubly-linked list:
• value: E
• parent, left, right: BinaryTree<E>

10



Linked Representation

11



Tree Traversals

• Traversals:
• Pre-Order: root, left subtree, right subtree
• In-Order: left subtree, root, right subtree
• Post-Order: left subtree, right subtree, root

• Most algorithms have two parts:
• Build tree
• Traverse tree, performing operations on nodes

12



Evaluate Expression Tree

• Evaluate left subtree, right subtree, perform operation at 
root.

• Generate stack-based code to evaluate: post-order

13


