
Lecture 12: Linked Lists
CS 62

Fall 2017
Kim Bruce & Alexandra Papoutsaki

Weekly Lab

• Lab: JUnit
• Unit testing with Java. Learn how to generate complete

set of tests for each method in program.

• Read 4 items called for in Lab handout!

Weekly Assignment

• Assignment: Compression
• Need to define new class CurDoublyLinkedList

• Keeps track of “current” elt.

• Can be subclass of DoublyLinkedList from Structure5 library.

• Get up to two points extra credit if turn in design by
Thursday midnight.

Linked List
• Composed of Nodes

• Think of as snap-lock beads

• See code in structure5 library
• From documentation page!

• See code in SinglyLinkedList
• Bailey - not std Java!

• keep track of head and size

• Extends AbstractList -- look at on own!
• Vector also extends AbstractList

• Also see SinglyLinkedListIterator

size = 4

Linked List Algos

• Constructor

• addFirst, removeFirst

• get(i)

• indexOf(e)

• add(i,o)

• remove(e), remove(i)

• iterator
What is worst-case complexity of each?

✔

✔

Read and understand
code!!

Variants of List

• If add a lot at end, add “tail” pointer
• Makes adding at end faster

• But bit harder to delete at end

• More special cases -- e.g. add first when empty

• See implementation when look at queues.

Variants of List

• Circular lists
• Keep reference/pointer to end rather than beginning

• What is the difference between adding to end & beginning?

• getFirst vs getLast?
• removeLast still hard!

• How do you know when at end of list if searching?

Doubly-Linked List
• Doubly Linked Lists

• Previous pointer as well as next

• Useful if need to traverse in both directions

• Provided by java.util.LinkedList (but we’re using
DoublyLinkedList from Bailey)

• Must change twice as many links when adding or
deleting!

• Our class has head and tail pointers,
• Doubly-linked lists often represented as circular!

How do you choose which to
use?

Expectations

• You should be able to write any of these
methods in any variant.

• Midterms always include such a question!

• But don’t try to memorize them!!!

Compact description of linked list variants:
https://wiki.cs.auckland.ac.nz/compsci105ss/index.php/Linked_Lists

