
Lecture 11: Linked Lists
CS 62

Fall 2017
Kim Bruce & Alexandra Papoutsaki

Piazza

• Two students still not enrolled.

• All important communications to the class will
be through Piazza.
• You are responsible for knowing what has been posted

there.

Writing Code

• No complex code ever works first time.
• If I just fix this last thing …

• Think about testing before you write the code.
• Never write more than a method or two without testing

it.

• Talk about JUnit in lab next week.

FileIO

• File class:
• represents a file or directory

• doesn’t have to exist

• use the File.separator so that it doesn’t matter what
system we run on.

• Some methods that may be helpful:
• delete()

• exists()

• createNewFile()

• isFile()

• isDirectory()
• listFiles()
• mkdir()
• renameTo(...)

Linked Lists

• Alternate implementation of lists

• Trade-offs in complexity
• With ArrayList expensive to add at beginning of list

• Linked lists inexpensive to add early

• However, slow to access ith element.

Linked List
• Composed of Nodes

• Think of as snap-lock beads

• See code in structure5 library
• From documentation page!

• See code in SinglyLinkedList
• Bailey - not std Java!

• keep track of head and size

• Extends AbstractList -- look at on own!
• Vector also extends AbstractList

• Also see SinglyLinkedListIterator

size = 4

Linked List Algos

• Constructor

• addFirst, removeFirst

• get(i)

• indexOf(e)

• add(i,o)

• remove(e), remove(i)

• iterator
What is worst-case complexity of each?

Variants of List

• If add a lot at end, add “tail” pointer
• Makes adding at end faster

• But bit harder to delete at end

• More special cases -- e.g. add first when empty

• See implementation when look at queues.

Variants of List

• Circular lists
• Keep reference/pointer to end rather than beginning

• What is the difference between adding to end & beginning?

• getFirst vs getLast?

• removeLast still hard!

• How do you know when at end of list if searching?

Doubly-Linked List

• Doubly Linked Lists
• Previous pointer as well as next

• Useful if need to traverse in both directions

• Provided by java.util.LinkedList (but we’re using
DoublyLinkedList from Bailey)

• Must change twice as many links when adding or
deleting!

• Our class has head and tail pointers,
• Doubly-linked lists often represented as circular!

Expectations

• You should be able to write any of these
methods in any variant.

• Midterms always include such a question!

• But don’t try to memorize them!!!

Compact description of linked list variants:
https://wiki.cs.auckland.ac.nz/compsci105ss/index.php/Linked_Lists

