
Lecture 10: Iterators &
Linked Lists

CS 62
Fall 2017

Kim Bruce & Alexandra Papoutsaki

Questions on Lab or
Assignment?

Timing?

Quiz

• Topics:
• Sorting, big-O,

• iterators

• set up induction …

Sort Review

• Selectionsort:
• Algorithm: Find largest, put at end, sort rest

• Complexity: O(n2)

• Mergesort:
• Algorithm: Divide in half, sort each half, then merge

them in order

• Complexity: O(n log n)
• but needs O(n) extra space to merge into

When we write log n in CS, we mean log2 n

Sort Review

• Quicksort: New divide & conquer:
• Algorithm: Move small elts to left, large to right 

Sort left elts, sort right elts, done!

• Complexity: O(n log n) on average, O(n2) in worst case

When we write log n in CS, we mean log2 n

What is Best to Use?

• Depends:
• If small list, then selection, insertion have less overhead

• If large and must always run quickly, merge sort, but
need extra space.

• If must run fast on average, but occasional slow OK,
then quick sort.

When we write log n in CS, we mean log2 n

Iterators

• Provide elements of data structure one at a
time so can iterate through elts performing
operations.

• Interface in standard Java

public interface Iterator<E> {
 // Returns true if the iteration has more elements.
 boolean hasNext()

 // Returns the next element in the iteration.
 E next()

 /**
 * Removes from the underlying collection the last element
 * returned by this iterator (optional operation). */
 void remove()
}

Iterator in Java

Another method in Java 8 — may discuss later

Iterator Rules

• Remove is optional (we won’t use it)

• Only allowed to call remove once and then
must terminate iteration.

• Never change a collection in middle of an
iteration
• Behavior is officially undefined if do!

• Iterator often copies data structure before iterating, so
changes may not appear to original!

Iterable

• Data structures with an iterator, satisfy
interface Iterable:
• Has method iterator() returning Iterator<E>

• Example: ArrayList<E> has method
• Iterator<E> iterator()

• See definition and use of of iterator in
ArrayIndexList<E>.
• Often implemented by inner class. Why?

Code using Iterator
Iterator<String> listIterator = myList.iterator();

while(listIterator.hasNext()){
System.out.println(listIterator.next());

}

while(listIterator.hasNext()){
 String elt = listIterator.next() if need it twice
 System.out.println(elt);
}

Can make it even easier!

Iterators and For loops

• Abbreviates previous code!

• Fine as long as myList has an iterator method

• Called an active or external iterator.

for(String elt: myList){
 System.out.println(elt);
}

List Iterator

• Notice can have two iterators going through
list independently!

• Never modify a data structure when iterating
through elements as may get unpredictable
results.
• Most classes in Java collection classes have iterators

which are designed to “fail fast”. Throw an exception if
continue with iterator (e.g., next()) after add or delete.

Java 8

• See Iterating over collections in Java 8

• forEach method now in collection classes

public void forEach(Consumer<? super E> action)
Description copied from interface: Iterable

Performs the given action for each element of the Iterable until all
elements have been processed or the action throws an exception.
Unless otherwise specified by the implementing class, actions are
performed in the order of iteration (if an iteration order is
specified). Exceptions thrown by the action are relayed to the
caller.

Internal iterator!

Code using forEach

• No explicit control over iterator

• Similar to Java 5 built-in for loop
• but it is a method of data structure!!

• Consumer is an interface with method 
 void accept (T t)

• accept method has code to be executed

• Most valuable when more than one way to traverse

• May only access effectively final variables from scope

myList.forEach(elt ->
 {System.out.println(elt);});

red code is
anonymous function

Code
• Method definition:

• forEach is “default method” of Iterable
interface.
• Automatically inherited in all classes implementing it.

• See article for restrictions on default methods — can’t
access instance variables!

public void forEach(Consumer <? super E>action) {
 for (E elt: this) {
 action.accept(elt);
 }
 }

