Lecture 1: Overview &
Java

CS 62

Fall 2017
Kim Bruce & Alexandra Papoutsaki

http://www.cs.pomona.edu/classes/cs062

8/29/17

38|27 (43|3|9(82(|10

Who we are:

4

Kim Bruce Alexandra Papoutsaki
i 4 i
David Ahia Bradley Bain Emily Chen Victor de Fontnouvelle
ye VI'; cl
- =<3
e
Samuel Gearou Daniel Rosenbaum Erinna Woo

Why take CS627

* How to implement algorithms and data structures in
Java.

* How to design large programs (in object-oriented
style) so that it is easy to modify them.

* How to analyze complexity of alternative
implementations of problems.

8/29/17

Sample Problems Sample Problems

* Find the shortest path from Claremont to Chicago on * Schedule final exams so there are no conflicts.

interstate system (and do it efficiently).

50@ Student (

Quekins

B

- Google maps my.pomona.edu

-
A

st

Sample Problems Sample Problems
« Design and implement a scientific calculator. « Design and implement a simulator that lets you stud
9 p 9 p y y
I traffic flow in a city or airport.
2nd | const] var | % i [1 2 | <
asin | asinh| acot | ¥vx xY 7 8 9 | mod
acos [acosh|[asec|| vx | =2 || 4 | 5 | 6 || #
atan | atanh| acsc| Vx x? 1 2 3 - = web2.0cale airtopsoft
ner | mpr| 1 | log | 10| 0 | % +
©0eg ORad | . Hismry--v 'v + ot <-draw graph v

8/29/17

Your responsibilities

+ Skim reading in advance of lecture.

* After lectures, review notes and study examples carefully

until you understand them.
» Come to labs prepared.
* Don't remain confused. Faculty and TAs are here to help.

* Follow academic integrity guidelines

Assignments

* Lab work:
« Learn tools and prepare work for weekly assignments.
* Lab attendance is mandatory! No lab today!!!
* Weekly assignment is separate
* Programs generally are due on Sunday nights.
+ See late policy on syllabus. 3"% penalty per day late.
* Daily homework
* Not collected, but often on regular Friday quizzes.

* No quiz this Friday!

Text

+ Java Structures, V7 edition, by Duane Bailey
+ available online for free

* http://www.cs.williams.edu/~bailey/JavaStructures/Book.html

* Various online resources

Slides

* Will generally be available before class

* with code, where applicable
* Designed for class presentation, not for complete notes.
* Will need to take notes (perhaps on slides).

* No laptops or other electronics open in class

« If you have a disability affecting this, come see me.

8/29/17

Prerequisite

« Officially, CS 52 at Pomona

» Knowledge of Java equivalent to CS 51 at Pomona or CMC

or the AP Test with 4 or 5.
* not CS 5 from HMC or CS 30 from Pomona!

» Come see one of faculty if having any questions

» Assume comfortable with classes & objects, recursion,

multi-dimensional arrays, etc. in Java

Heavy Workload

* students spend average of 8+ hours outside of class.

*... but not "weeder”

* Must both learn practical (programming) skills and
more theoretical analysis skills

* Learn about tools to become better programmer

* Be ready to answer "“interview questions”

Grading Policy

Weekly Programming Assignments 35%
Exams: Total: 55%
Midterms: 15% each
Final Exam: 25%
In-lab exercises and quizzes 10%
Total: 100%

* We drop the two quizzes with the lowest grade

* Keep this option for real emergencies and unpredictable events

See online syllabus for other important information!

Especially academic honesty!!

http://www.cs.pomona.edu/classes/cs062

8/29/17

Object-Oriented Design

* Objects are building blocks.
* Programs are collections of interacting objects.

* Objects cooperate to compute solutions or complete

tasks.

* Objects communicate via sending messages.

Objects

laemles-cl; 5-th I alifornia

Objects

* Objects can model objects from world:
* Physical things
* e.g., car, student, card, deck of cards
+ Concepts
* e.g., meeting, date
* Processes

* e.g., sorting, simulations

More objects

* Objects have:
* Properties, e.g., color, model, manufacturer
« Capabilities, e.g., drive, stop, admit passenger
* Objects responsible for knowing how to perform
actions.
» Commands: change object's properties, (e.g., set speed)

* Queries: respond based on object’s properties (e.g., how fast?)

8/29/17

Even more objects

* Properties typically implemented as “fields” or “instance
variables”
+ Affect how objects reacts to to messages
+ Can be:
« Attributes, e.g., color
+ Components, e.g., door
+ Associations, e.g., driver
+ Capabilities as “methods”

* Invoked by sending messages

Quick Java Review

Primitive vs Object Types

* Objects: String, anything created by a class with “"new”

« respond to messages

« Primitives: int, double, float, boolean
* do not respond to messages
* cannot be used to instantiate type variables
* have corresponding object types:

« Integer, Double, Float, Boolean

Classes

* Classes are templates for objects
+ Constructors generate new distinct objects
« new Car("Toyota™)
* Specify all fields and methods - public and non-public
* May be used as basis for more refined classes via inheritance
+ class Car extends Vehicle

8/29/17

All classes inherit “Object” class

* Object class has methods:

- public boolean equals (Object other)
+ Default behavior returns true only if same object

» public String toString()
+ Returns string representation of object - default is hexadecimal
« Does not print the string
« Typically needs to be overwritten to be useful

« public int hashCode()

* Unique identifier defined so that if a.equals(b) then a, b have same hashCode

Enum Types

* Example
- enum Suit {CLUBS, DIAMONDS, HEARTS, SPADES}

*» Operations:
» int compareTo(Suit other)
« String toString()
« int ordinal() starts with 0, not 1
« static Suit valueOf(String name)

« static Suit[] values() returns array of all values

Java Keywords

- abstract class -- can't be instantiated
+ usually some methods missing

* Information hiding qualifiers:
- public
- private
- protected

« static -- copy associated with class, not objects

« findl -- only assigned to once
* in its declaration or constructor

Interfaces & Inheritance

* Provide info on publicly available methods of objects
* "what not how”

+ Class implements interface if it supports all methods of interface
« Try to use interfaces as types for flexibility

* Interface can extend another by adding methods
* If Aextends B and x has type A, then also has type B

* One class can extend another
+ inherits fields and methods
+ can override existing methods, add new ones

+ instanceof & casts
+ Ex: in Ratio class later

8/29/17

Card Deck Example

« CardInterface --interface

« AbsCard

« abstract class, implements CardInterface

« Card extends AbsCard
« OtherCard extends AbsCard

» Deck
« Class holding array of Card objects

Extending vs Implementing

* Extending a class allows sharing behavior:
+ Card, OtherCard extend AbsCard

* Implementing an interface provides an implementation
« Card, OtherCard implement CardInterface

+ Either can be associated with variable of type CardInterface.

* Makes it easier to replace implementations.

