
8/29/17

1

CS 62
Fall 2017

Kim Bruce & Alexandra Papoutsaki

http://www.cs.pomona.edu/classes/cs062

Lecture 1: Overview &
Java

1
https://commons.wikimedia.org/w/index.php?curid=8004317

Welcome!

2

Who we are:

Kim Bruce Alexandra Papoutsaki

David Ahia Emily Chen Victor de Fontnouvelle

Samuel Gearou Daniel Rosenbaum 3Erinna Woo

Bradley Bain

Why take CS62?

•How to implement algorithms and data structures in
Java.

•How to design large programs (in object-oriented
style) so that it is easy to modify them.

•How to analyze complexity of alternative
implementations of problems.

4

8/29/17

2

Sample Problems

• Find the shortest path from Claremont to Chicago on

interstate system (and do it efficiently).

5

Google maps

Sample Problems

• Schedule final exams so there are no conflicts.

6

my.pomona.edu

Sample Problems

•Design and implement a scientific calculator.

7

web2.0calc

Sample Problems

•Design and implement a simulator that lets you study

traffic flow in a city or airport.

8

airtopsoft

8/29/17

3

Your responsibilities

• Skim reading in advance of lecture.

• After lectures, review notes and study examples carefully

until you understand them.

• Come to labs prepared.

• Don’t remain confused. Faculty and TAs are here to help.

• Follow academic integrity guidelines

9

Assignments

• Lab work:
• Learn tools and prepare work for weekly assignments.

• Lab attendance is mandatory! No lab today!!!

• Weekly assignment is separate
• Programs generally are due on Sunday nights.

• See late policy on syllabus. 3"% penalty per day late.

• Daily homework
• Not collected, but often on regular Friday quizzes.

• No quiz this Friday!

10

Text

• Java Structures, 7� edition, by Duane Bailey

• available online for free

• http://www.cs.williams.edu/~bailey/JavaStructures/Book.html

• Various online resources

11

Slides

•Will generally be available before class

• with code, where applicable

• Designed for class presentation, not for complete notes.

• Will need to take notes (perhaps on slides).

• No laptops or other electronics open in class

• If you have a disability affecting this, come see me.

12

8/29/17

4

Prerequisite

• Officially, CS 52 at Pomona

• Knowledge of Java equivalent to CS 51 at Pomona or CMC

or the AP Test with 4 or 5.

• not CS 5 from HMC or CS 30 from Pomona!

• Come see one of faculty if having any questions

• Assume comfortable with classes & objects, recursion,

multi-dimensional arrays, etc. in Java

13

Heavy Workload

• students spend average of 8+ hours outside of class.

•… but not “weeder”

•Must both learn practical (programming) skills and

more theoretical analysis skills

• Learn about tools to become better programmer

• Be ready to answer “interview questions”

14

Grading Policy

• We drop the two quizzes with the lowest grade
• Keep this option for real emergencies and unpredictable events

15

Weekly Programming Assignments 35%

Exams: Total: 55%

Midterms: 15% each

Final Exam: 25%

In-lab exercises and quizzes 10%

Total: 100%

See online syllabus for other important information!

Especially academic honesty!!

http://www.cs.pomona.edu/classes/cs062

16

8/29/17

5

Object-Oriented Design

•Objects are building blocks.

• Programs are collections of interacting objects.

•Objects cooperate to compute solutions or complete

tasks.

•Objects communicate via sending messages.

17

Objects

18http://www.trover.com/d/MHOV-laemles-claremont-5-theatres-claremont-california

Objects

• Objects can model objects from world:

• Physical things

• e.g., car, student, card, deck of cards

• Concepts

• e.g., meeting, date

• Processes

• e.g., sorting, simulations

19

More objects

•Objects have:

• Properties, e.g., color, model, manufacturer

• Capabilities, e.g., drive, stop, admit passenger

•Objects responsible for knowing how to perform

actions.

• Commands: change object’s properties, (e.g., set speed)

• Queries: respond based on object’s properties (e.g., how fast?)

20

8/29/17

6

Even more objects

• Properties typically implemented as “fields” or “instance

variables”
• Affect how objects reacts to to messages

• Can be:

• Attributes, e.g., color

• Components, e.g., door

• Associations, e.g., driver

• Capabilities as “methods”

• Invoked by sending messages

21

Quick Java Review

22

Primitive vs Object Types

•Objects: String, anything created by a class with “new”

• respond to messages

• Primitives: int,	double,	float,	boolean
• do not respond to messages

• cannot be used to instantiate type variables

• have corresponding object types:

• Integer,	Double,	Float,	Boolean

23

Classes

• Classes are templates for objects
• Constructors generate new distinct objects

• new Car("Toyota")
• Specify all fields and methods – public and non-public

• May be used as basis for more refined classes via inheritance
• class Car extends Vehicle

24

8/29/17

7

All classes inherit “Object” class

• Object class has methods:

• public boolean equals (Object other)
• Default behavior returns true only if same object

• public String toString()
• Returns string representation of object – default is hexadecimal

• Does not print the string

• Typically needs to be overwritten to be useful

• public int hashCode()
• Unique identifier defined so that if a.equals(b) then a, b have same hashCode

25

Enum Types

• Example

• enum Suit {CLUBS, DIAMONDS, HEARTS, SPADES}

• Operations:

• int compareTo(Suit other)
• String toString()
• int ordinal() starts with 0, not 1

• static Suit valueOf(String name)
• static Suit[] values() returns array of all values

26

Java Keywords

• abstract class -- can’t be instantiated
• usually some methods missing

• Information hiding qualifiers:
• public
• private
• protected

• static -- copy associated with class, not objects

• final -- only assigned to once
• in its declaration or constructor

27

Interfaces & Inheritance

• Provide info on publicly available methods of objects
• ”what not how”

• Class implements interface if it supports all methods of interface
• Try to use interfaces as types for flexibility

• Interface can extend another by adding methods
• If A extends B and x has type A, then also has type B

• One class can extend another
• inherits fields and methods
• can override existing methods, add new ones

• instanceof & casts
• Ex: in Ratio class later

28

8/29/17

8

Card Deck Example

• CardInterface -- interface

• AbsCard
• abstract class, implements CardInterface

• Card extends AbsCard

• OtherCard extends AbsCard

• Deck
• Class holding array of Card objects

29

Extending vs Implementing

• Extending a class allows sharing behavior:
• Card, OtherCard extend AbsCard

• Implementing an interface provides an implementation
• Card, OtherCard implement CardInterface
• Either can be associated with variable of type CardInterface.
• Makes it easier to replace implementations.

30

