$$
\begin{array}{r}
\text { csci54 - discrete math \& functional programming } \\
\text { counting, probability }
\end{array}
$$

Some probability questions

- A deck of cards consists of 52 cards, each with a rank (2-10, J, Q, K, A) and a suit ($\curvearrowleft \diamond \circlearrowleft ৯$).
- If you draw a card from a perfectly-shuffled deck of cards, what is the probability that the card is a heart?
- If you draw a card from a perfectly-shuffled deck of cards, what is the probability that it is either the Queen of Hearts or the 9 of clubs?
- If you draw two cards (without replacement) from a perfectlyshuffled deck of cards, what is the probability that both cards are hearts?

Probability

- A deck of cards consists of 52 cards, each with a rank (2-10, J, Q, K, A) and a suit ($\wp \diamond \diamond \uparrow$).
- If you draw a card from a perfectly-shuffled deck of cards, what is the probability that the card is a heart?
- One process:
- define a sample space S , which is a set containing all possible outcomes
- determine the subset of outcomes that defines the event
- calculate the probability of the outcomes in the event
- sum those probabilities

Probability - some definitions

Definition 10.1: Outcomes and sample space.

An outcome of a probabilistic process is the sequence of results for all randomly determined quantities. (An outcome can also be called a realization of the probabilistic process.) The sample space S is the set of all outcomes.

Definition 10.2: Probability function.

Let S be a sample space. A probability function $\operatorname{Pr}: S \rightarrow \mathbb{R}$ describes, for each outcome $s \in S$, the fraction of the time that s occurs. (We denote probabilities using square brackets, so the probability of $s \in S$ is written $\operatorname{Pr}[s]$.) We insist that the following two conditions hold of the probability function Pr :

$$
\begin{aligned}
& \sum_{s \in S} \operatorname{Pr}[s]=1 \\
& \operatorname{Pr}[s] \geq 0 \text { for all } s \in S
\end{aligned}
$$

Definition 10.3: Event.

Let S be a sample space with probability function Pr. An event is a subset of S. The probability of an

If you have equally likely outcomes, then the probability of a particular event is the number of outcomes in that event divided by the total number of possible outcomes event E is the sum of the probabilities of the outcomes in E, and it is written $\operatorname{Pr}[E]=\sum_{s \in E} \operatorname{Pr}[s]$.

In practice

- A deck of cards consists of 52 cards, each with a rank (2-10, J, Q, K, A) and a suit ($\delta \diamond \circlearrowleft ৯$). For each of the following specify your sample space befeore answering the question.
- If you draw a card from a perfectly-shuffled deck of cards, what is the probability that:
- the card is a heart?
- If you draw two cards (without replacement) from a perfectlyshuffled deck of cards, what is the probability that
- both cards are hearts?
- the two cards have different suits?
- the two cards sum to 3 (i.e. you draw an Ace and a 2)

Independent vs. dependent events

```
Definition 10.9: Independent and dependent events.
```



``` called dependent if they are not independent.
```

- I randomly choose a number 1, 2, ..., 10. Consider the following 3 events. Are any pair of them independent?
- A: I choose an odd number
- B: I choose a prime number
- C: I choose a number (strictly) less than 5.

Conditional probability

Definition 10.11: Conditional probability.

The conditional probability of A given B, written $\operatorname{Pr}[A \mid B]$, is given by $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$.

- I randomly choose a number 1, 2, ..., 10. Consider the following two events. What are the conditional probabilities $\operatorname{Pr}[\mathrm{A} \mid \mathrm{B}]$ and $\operatorname{Pr}[\mathrm{B} \mid \mathrm{A}]$?
- A: I choose an odd number
- B: I choose a prime number

Theorem 10.14: The Law of Total Probability.

Let A and B be arbitrary events. Then $\operatorname{Pr}[A]=\operatorname{Pr}[A \mid B] \cdot \operatorname{Pr}[B]+\operatorname{Pr}[A \mid \bar{B}] \cdot \operatorname{Pr}[\bar{B}]$.

Conditional probability

Theorem 10.14: The Law of Total Probability.

Let A and B be arbitrary events. Then $\operatorname{Pr}[A]=\operatorname{Pr}[A \mid B] \cdot \operatorname{Pr}[B]+\operatorname{Pr}[A \mid \bar{B}] \cdot \operatorname{Pr}[\bar{B}]$.

Theorem 10.15: Bayes' Rule.
For any two events A and B, we have $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[B \mid A] \cdot \operatorname{Pr}[A]}{\operatorname{Pr}[B]}$.

- I have two coins in an opaque bag. The coins are visually indistinguishable, but one coin is fair (Prob $\mathrm{H}=0.5$); and the other coin is biased (Prob H = 0.75). I pull one of the two coins out at random. If I flip the coin and it comes up heads, what is the probability that I'm holding the biased coin?

