$$
\begin{array}{r}
\text { csci54 - discrete math \& functional programming } \\
\text { counting, probability }
\end{array}
$$

Probability

- A deck of cards consists of 52 cards, each with a rank (2-10, J, Q, K, A) and a suit ($\wp \diamond \diamond \uparrow$).
- If you draw a card from a perfectly-shuffled deck of cards, what is the probability that the card is a heart?
- One process:
- define a sample space S , which is a set containing all possible outcomes
- determine the subset of outcomes that defines the event
- calculate the probability of the outcomes in the event
- sum those probabilities

Probability - some definitions

Definition 10.1: Outcomes and sample space.

An outcome of a probabilistic process is the sequence of results for all randomly determined quantities. (An outcome can also be called a realization of the probabilistic process.) The sample space S is the set of all outcomes.

Definition 10.2: Probability function.

Let S be a sample space. A probability function $\operatorname{Pr}: S \rightarrow \mathbb{R}$ describes, for each outcome $s \in S$, the fraction of the time that s occurs. (We denote probabilities using square brackets, so the probability of $s \in S$ is written $\operatorname{Pr}[s]$.) We insist that the following two conditions hold of the probability function Pr :

$$
\begin{aligned}
& \sum_{s \in S} \operatorname{Pr}[s]=1 \\
& \operatorname{Pr}[s] \geq 0 \text { for all } s \in S
\end{aligned}
$$

Definition 10.3: Event.

Let S be a sample space with probability function Pr. An event is a subset of S. The probability of an

If you have equally likely outcomes, then the probability of a particular event is the number of outcomes in that event divided by the total number of possible outcomes event E is the sum of the probabilities of the outcomes in E, and it is written $\operatorname{Pr}[E]=\sum_{s \in E} \operatorname{Pr}[s]$.

Equally likely outcomes

- A deck of cards consists of 52 cards, each with a rank (2-10, J, Q, K, A) and a suit ($\& \diamond \diamond ৯$). For each of the following, define the event as a subset of a set of equally likely outcomes. Then compute the probability of the event.
- If you draw a card from a perfectly-shuffled deck of cards, what is the probability that the card is a heart?
- If you draw a card from a perfectly-shuffled deck of cards, what is the probability that it is either the Queen of Hearts or the 9 of clubs?
- If you draw two cards from a perfectly-shuffled deck of cards, what is the probability that both cards are hearts?

Some example questions

- There are 141 CS majors. How many ways are there to choose a team of 3 CS majors?
- In a programming contest, teams of 3 try to solve 10 questions. To start, each team member must pick a problem to work on (with possible collaboration). How many ways are there for a team to choose who to solve what problem first?
- Say a team calculates that they can code and submit 20 attempts across all 10 questions. How many different ways can they allocate these submission attempts across the questions? (We don't care the submission order, and you can submit to a problem multiple times)

Choosing k of n elements

- Can you choose an element more than once? (is repetition allowed)
- Does the order matter?
- order matters, without repetition
- order matters, with repetition
- order doesn't matter, with repetition
- order doesn't matter, without repetition

More practice questions

- (State any assumptions!)
- Suppose I have 20 different colored markers and 8 students. How many ways are there to give the markers to the students if each student needs exactly 1 marker? If each student needs exactly 2 markers?
- Suppose I have 5 identical "I CS54" stickers all of which I plan to give away to the 8 students. How many ways are there to distribute the stickers if each student gets at most 1 sticker? If each student can get more than 1 sticker?

One last principle: Pigeonhole principle

- If there are $n+1$ pigeons nesting in n pigeonholes, then at least one pigeonhole contains more than 1 pigeon.
- Example: Given any 3 integers, there must be two whose sum is an even number.
- Example: A member of the house of representatives can vote Aye, Nay, or Abstain on a bill. There are 435 representatives who voted on a total of 5 bills last week. Claim: there must be 2 representatives who voted identically on all 5 bills.

