
csci54 – discrete math & functional programming
RSA continued, error correction



RSA algorithm
 A very widely used public 

key encryption algorithm

 Three algorithmic 
components
 key generation
 encryption
 decryption

 Our plan
 What is the algorithm?
 Why does it work?
 How to implement it 

efficiently?



RSA - public key algorithm

possibly helpful video on RSA by Art of the Problem: 
https://www.youtube.com/watch?v=wXB-V_Keiu8



RSA: implementing efficiently 
 public key: (e,n)  and private key: (d,n)
 encrypt(m) = me mod n
 decrypt(z) = zd mod n

 key generation:
 Choose a bit-length k
 Choose two primes p and q which can be represented with k bits
 Let n = pq so ϕ(n) = (p-1)(q-1)
 Find e such that 0 < e < n and gcd(e,ϕ(n)) = 1
 Find d such that (d*e) mod ϕ(n) = 1

exponentiation

how to choose?

how to find?



Implementing RSA – key generation (part 1)
 computing primes p, q that are k bits long

 pick a random number and test to see if it's prime
 how?

Fermat's Little Theorem:
If p is prime and gcd(a,p) = 1, then ap-1  
1 mod p
Equivalently, ap  a mod p

prime-test(num):
for i = 1:maxIter:
     pick a random number 1 < a < 

num-1
     if not ( anum  a mod num )

              return False
        return True



Implementing RSA – key generation (part 2)
 finding d, e such that (d*e) mod ϕ(n) = 1

if gcd (a,b) = 1 then:
we say that a and b are relatively prime
there exists an integer c such that (a*c) mod b = 1

in fact, gcd(a,b)=1 if and only if there exists an integer c such 
that (a*c) mod b = 1

compute-de(n):
   pick random e, 0 < e < n
     try to find d such that (d*e) mod ϕ(n) = 
1
           if none exists, try another e
           if one exists, we’re done!

Euclid's algorithm



What is the algorithm?
Why does it work?
How to implement it 
efficiently?

How to use it ethically?







Transmitting information

 cryptography
 error correction
 compression

encoder decoder
message message’codeword

codeword’

channel



Transmitting information – error correction

 goal is to recover message' = message even if codeword' != 
codeword

 why?
 how?
 assumptions 

 the message is a string of bits 
 codeword and codeword' have the same length

encoder decoder
message message’codeword

codeword’

channel



Error correction

 proposal 1:
 encode: repeat each bit 
 1001111    11000011111111

 proposal 2:
 encode: triple each bit 
 1001111    

111000000111111111111

encoder decoder
message message’codeword

codeword’

channel

How do we evaluate?





Error correcting codes
 sender has a message m in {0,1}k

 encoding turns m into a codeword c in C={0,1}n

 receiver gets some c' where |c'| = n and c' may not be in C
 decoding maps c' to closest element of C and decodes to m'  

{0,1}k



How different are two strings?

 (110, 000)
 (000111, 010101)

https://amturing.acm.org/award_winners/
hamming_1000652.cfm

The way mathematics is currently 
taught it is exceedingly dull. In 
the calculus book we are 
currently using on my campus, I 
found no single problem whose 
answer I felt the student would 
care about! 



Error correcting codes
 sender has a message m in {0,1}k

 encoding turns m into a codeword c in {0,1}n

 receiver gets some c' where |c'| = n 
 decoding maps c' to closest element of C and decodes to m' 
 Definitions:

 A code is a set {0,1}n for some integer 1≤k≤n
 Any element of {0,1}k is called a message and the elements of the 

code are called codewords.



Error correcting codes

 sender has a message m  {0,1}k

 encoding turns m into a codeword 
    c  {0,1}n where c  and || = 2k

 receiver gets some c' where 
|c'| = k and c' may not be in  

 decoding maps c' to closest 
element of  and decodes to 
m'  {0,1}k



An example
 Consider the following code:

 What is k?  What is n?  
 How would you encode 10?
 How would you decode 111110?

Example 4.2 in CDMCS

message codeword
00 000000
01 000111
10 100001
11 101010



Error detecting and correcting codes
 Let  {0,1}n be a code and let n be a positive integer.

 We say that C can detect errors if, for any codeword c and for 
any number of up to k errors applied to c, we can correctly 
report error or no error.

 We say that C can correct  errors if, for any codeword c and for 
any number of up to k errors applied to c, we can correctly 
identify that the original codeword was c.



Practice problem
 Consider the following code:

 What is k?  What is n?  
 How would you encode 10?
 How would you decode 111110?
 How many errors can this code detect?  Correct?

Example 4.2 in CDMCS

message codeword
00 000000
01 000111
10 100001
11 101010



Example
 Let's think about our original repetition codes

 proposal 1:
 encode: repeat each bit 
 1001111    11000011111111

 proposal 2:
 encode: triple each bit 
 1001111    111000000111111111111

 Assume messages have length 7.  What is n?  What is C?  And 
how many errors can C detect?  Correct?



Formally
 The minimum distance of a code C is the smallest Hamming 

distance between two distinct codewords in C.  

 The rate of a code is the ratio between the message length (k) 
and the codeword length (n).

 Example:
 code in which you repeat each of the n bits in a message

 minimum distance: 2
 rate: 1/2



Practice
 The minimum distance of a code C is the smallest Hamming 

distance between two distinct codewords in .  
 The rate of a code is the ratio between the message length (k) 

and the codeword length (n).

 What is the minimum distance?  What is the rate?
1. triple each of the k bits in the message
2. practice codemessage codeword

00 000000
01 000111
10 100001
11 101010



Relating the minimum distance and the rate
 Let t be any positive integer.  If the minimum distance of a 

code C is 2t+1, then C can detect 2t errors and correct t 
errors.

 Some questions:
 How can you design a code that detects as many errors as possible?
 How likely are you to hit the worst case?
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