cscib4 — discrete math & functional programming
RSA continued, error correction




RSA algorithm
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> Our plan

What is the algorithm?
Why does it work?

How to implement it
offcientiv/?



RSA - public key algorithm
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Figure 7.27 A schematic of the RSA cryptosystem, where n = pq and de =(,_1)(4—1) 1, for prime numbers p and g.

possibly helpful video on RSA by Art of the Problem:
https://www.youtube.com/watch?v=wXB-V_Keiu8




RSA: implementing efficiently

> public key: (e,n) and private key: (d,n)
> encrypt(m) = me mo

n . .
> decrypt(z) = zd mod(} exponentiation

> key generation:
Choose a bit-length k

Choose two prlmes o and g which can be represented w].tl’mdgvbms choose?
Let n = pqg so ¢(n) = (p-1)(g-1)

Find e such that O < e < nand gcd(e,p(n) 1 ;

Find d such that (d*e) mod ¢(n) = hOW to find:



Implementing RSA — key generation (part 1)

> computing primes p, q that are k bits long
pick a random number and test to see if it's prime
how?

Fermat's Little Theorem:
If p Is prime and gcd(a,p) = 1, then ar?
1 mod p
Equivalently, a» a mod p

prime-test(num):
for 1 = 1:maxIter:
pick a random number 1 < a <
num-1
1f not ( a™™ a mod num )
return False
return True




Implementing RSA — key generation (part 2)
> finding d, e such that (d*e) mod ¢(n) =1

if gcd (a,b) = 1 then:
we say that a and b are relatively prime
there exists an integer c such that (a*c) mod b =1

In fact, gcd(a,b)=1 if and only if there exists an integer c such
that (a*c) mod b =1

compute-de(n):
pick random e, 0 < e < n
try to find d such that (d*e) mod ¢(n) =

1T none exists, try another e |Eyclid's algorithm

1f one exists, we’'re done!




What is the algorithm?
Why does it work?
How to implement it
efficiently?

How to use it ethically?
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Figure 7.27 A schematic of the RSA cryptosystem, where n = pq and de =(,_1)(4—1) 1, for prime numbers p and g.




The Moral Character of Cryptographic Work*
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Abstract. Cryptography rearranges power: it configures who can do
what, from what. This makes cryptography an inherently political tool,
and it confers on the field an intrinsically moral dimension. The Snowden
revelations motivate a reassessment of the political and moral positioning
of cryptography. They lead one to ask if our inability to effectively
address mass surveillance constitutes a failure of our field. I believe that
it does. I call for a community-wide effort to develop more effective means
to resist mass surveillance. I plead for a reinvention of our disciplinary
culture to attend not only to puzzles and math, but, also, to the societal
implications of our work.

Keywords: cryptography - ethics - mass surveillance - privacy -
Snowden - social responsibility






Transmitting information

channel

> cryptography
> error correction
> compression



Transmitting information — error correction

channel

> goal Is to recover message' = message even if codeword' !'=
codeword

> why?
> how?
> assumptions

the message is a string of bits
codeword and codeword' have the same length



Error correction

channel

> proposal 1:

encode: repeat each bit
1001111 11000011111111

How do we evaluate?

> proposal 2:

encode: triple each bit

1001111
111000000111111111111






Error correcting codes

> sender has a message m in {0,1}x
> encoding turns m into a codeword c in C={0,1}"

> receiver gets some c' where |c'| = nand ¢c' may not be in C

> decoding maps c' to closest element of C and decodes to m'
{0,1}¥



How different are two strings?

Definition 4.1: Hamming distance.
Let x,y € {0,1}" be two n-bit strings. The Hamming distance between x and y, denoted by A(x,y), is

the number of positions in which x and y differ. In other words,

Ax,y) = Hz €{1,2,...,n}: x; %yi}‘.

(Hamming distance is undefined if x and y don’t have the same length.)

The way mathematics is currently
taught it is exceedingly dull. In
the calculus book we are
currently using on my campus, I
found no single problem whose
answer I felt the student would
care about!

> (110, 000)
> (000111, 010101)

https://amturing.acm.org/award_winners/
hammina 1000R5Y fm



Error correcting codes

> sender has a message m in {0,1}x
> encoding turns m into a codeword c in {0,1}"

> receiver gets some c' where |c'| = n
> decoding maps c' to closest element of C and decodes to m'
> Definitions:

A code is a set {0,1}" for some integer 1<k=n

Any element of {0,1}*is called a message and the elements of the
code are called codewords.



Error correcting codes

sender

message

codeword

)

mG{O,l}k ceC

~N-

[4

BE 1[0, 1

\.

corruption

receiver

corrupted codeword

(

¢ € {0,1}"

reconstructed message

Y

m € {0,1}*

[4

\.

r

> receiver gets some c' where
|Ic'| = k and ¢' may not be In
> decoding maps c' to closest

element of and decodes to
m' {0,1}k

> sender has a message m {0,1}k
> encoding turns m into a codeword
c {0,1}wherec and || = 2



An example

> Consider the following code:

message codeword

00 000000
01 000111
10 100001
11 101010

> What is k? What is n?
> How would you encode 107
> How would you decode 1111107

Example 4.2 in CDMCS



Error detecting and correcting codes

> Let {0,1}" be a code and let n be a positive integer.

> We say that C can detect errors if, for any codeword c and for

any number of up to k errors applied to ¢, we can correctly
report error or no error.

> We say that C can correct errors if, for any codeword c and for
any number of up to k errors applied to ¢, we can correctly
identify that the original codeword was c.



Practice problem
> Consider the following code:

message codeword

00 000000
01 000111
10 100001
11 101010

> What is k? What is n?

> How would you encode 107

> How would you decode 1111107

* How many errors can this code detect? Correct?

Example 4.2 in CDMCS



Example

> Let's think about our original repetition codes

> proposal 1:
encode: repeat each bit
1001111 11000011111111
> proposal 2:

encode: triple each bit
1001111 111000000111111111111

> Assume messages have length 7. What is n? What is C? And
how many errors can C detect? Correct?



Formally

> The minimum distance of a code C is the smallest Hamming
distance between two distinct codewords in C.

> The rate of a code is the ratio between the message length (k)
and the codeword length (n).

> Example:

code in which you repeat each of the n bits in a message
minimum distance: 2
rate: 1/2



Practice

> The minimum distance of a code C is the smallest Hamming
distance between two distinct codewords in .

> The rate of a code is the ratio between the message length (k)
and the codeword length (n).

> What is the minimum distance? What is the rate?
triple each of the k bits in the message

practice COd'

000000
01 000111
10 100001

11 101010



Relating the minimum distance and the rate

> Let t be any positive integer. If the minimum distance of a
code Cis 2t+1, then C can detect 2t errors and correct t
errors.

> Some questions:
How can you design a code that detects as many errors as possible?
How likely are you to hit the worst case?
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