$$
\begin{array}{r}
\text { csci54 - discrete math \& functional programming } \\
\text { RSA continued, error correction }
\end{array}
$$

RSA algorithm

- A very widely used public key encryption algorithm
- Three algorithmic components
- key generation
- encryption
- decryption
- Our plan
- What is the algorithm?
- Why does it work?
- How to implement it efficiently?

RSA - public key algorithm

Figure 7.27 A schematic of the RSA cryptosystem, where $n=p q$ and $d e \equiv_{(p-1)(q-1)} 1$, for prime numbers p and q.

> possibly helpful video on RSA by Art of the Problem:
> https://www.youtube.com/watch?v=wXB-V_Keiu8

RSA: implementing efficiently

- public key: (e,n) and private key: (d,n)
- encrypt(m) $=m^{e} \bmod n$
- decrypt(z) $=z^{d} \bmod n$ exponentiation
- key generation:
- Choose a bit-length k
-Choose two primes p and q which can be represented wlthóvbite choose?
* Let $\mathrm{n}=\mathrm{pq}$ so $\phi(\mathrm{n})=(\mathrm{p}-1)(\mathrm{q}-1)$
- Find e such that $0<\mathrm{e}<\mathrm{n}$ and $\operatorname{gcd}(\mathrm{e}, \phi(\eta))$ how $\frac{1}{1}$ to find?
* Find d such that $(d * e) \bmod \phi(n)=1$

Implementing RSA - key generation (part 1)

- computing primes p, q that are k bits long
- pick a random number and test to see if it's prime
- how?

Fermat's Little Theorem:
If p is prime and $\operatorname{gcd}(a, p)=1$, then a^{p-1} $1 \bmod \mathrm{p}$ Equivalently, $a^{p} a \bmod p$

```
prime-test(num):
    for i = 1:maxIter:
        pick a random number 1 < a <
num-1
        if not ( anum a mod num )
        return False
        return True
```


Implementing RSA - key generation (part 2)

- finding d, e such that $(d * e) \bmod \phi(n)=1$

$$
\text { if } \operatorname{gcd}(a, b)=1 \text { then: }
$$

we say that a and b are relatively prime
there exists an integer c such that ($a^{*} \mathrm{c}$) $\bmod \mathrm{b}=1$
in fact, $\operatorname{gcd}(a, b)=1$ if and only if there exists an integer c such that (a^{*} c) $\bmod b=1$

```
compute-de(n):
    pick random e, 0 < e < n
        try to find d such that (d*e) mod \phi(n) =
```

1
if none exists, try another e Euclid's algorithm
if one exists, we're done!

What is the algorithm?
 Why does it work?
 How to implement it efficiently?

How to use it ethically?

Eve (eavesdropper)
trying to decrypt without Bob's secret key

Figure 7.27 A schematic of the RSA cryptosystem, where $n=p q$ and $d e \equiv_{(p-1)(q-1)} 1$, for prime numbers p and q.

The Moral Character of Cryptographic Work*

Phillip Rogaway
Department of Computer Science
University of California, Davis, USA
rogaway@cs.ucdavis.edu

December 2015
(minor revisions March 2016)

Abstract

Cryptography rearranges power: it configures who can do what, from what. This makes cryptography an inherently political tool, and it confers on the field an intrinsically moral dimension. The Snowden revelations motivate a reassessment of the political and moral positioning of cryptography. They lead one to ask if our inability to effectively address mass surveillance constitutes a failure of our field. I believe that it does. I call for a community-wide effort to develop more effective means to resist mass surveillance. I plead for a reinvention of our disciplinary culture to attend not only to puzzles and math, but, also, to the societal implications of our work.

Keywords: cryptography • ethics • mass surveillance • privacy • Snowden • social responsibility

Transmitting information

- cryptography
- error correction
- compression

Transmitting information - error correction

' goal is to recover message' = message even if codeword' != codeword

- why?
-how?
- assumptions
- the message is a string of bits
Δ 'codeword and codeword' have the same length

Error correction

- proposal 1:
- encode: repeat each bit
- 100111111000011111111
proposal 2:
How do we evaluate?
- encode: triple each bit
- 1001111

11100000011111111111

Error correcting codes

- sender has a message m in $\{0,1\}^{k}$
- encoding turns m into a codeword c in $C=\{0,1\}^{n}$
- receiver gets some c' where $\left|c^{\prime}\right|=n$ and c^{\prime} may not be in C
- decoding maps c' to closest element of C and decodes to m^{\prime} $\{0,1\}^{k}$

How different are two strings?

Definition 4.1: Hamming distance.

Let $x, y \in\{0,1\}^{n}$ be two n-bit strings. The Hamming distance between x and y, denoted by $\Delta(x, y)$, is the number of positions in which x and y differ. In other words,

$$
\Delta(x, y)=\left|\left\{i \in\{1,2, \ldots, n\}: x_{i} \neq y_{i}\right\}\right| .
$$

(Hamming distance is undefined if x and y don't have the same length.)

The way mathematics is currently taught it is exceedingly dull. In the calculus book we are currently using on my campus, I found no single problem whose answer I felt the student would care about!

Error correcting codes

- sender has a message m in $\{0,1\}^{k}$
- encoding turns m into a codeword c in $\{0,1\}^{n}$
- receiver gets some c' where $|c| \mid=n$
- decoding maps c' to closest element of C and decodes to m'
- Definitions:
" A code is a set $\{0,1\}^{n}$ for some integer $1 \leq k \leq n$
- Any element of $\{0,1\}^{k}$ is called a message and the elements of the code are called codewords.

Error correcting codes

- sender has a message m $\{0,1\}^{k}$
- encoding turns m into a codeword c $\{0,1\}^{n}$ where c and $\|=2^{k}$
receiver

- receiver gets some c' where $\left|c^{\prime}\right|=k$ and c^{\prime} may not be in
- decoding maps c' to closest element of and decodes to $m^{\prime}\{0,1\}^{k}$

An example

- Consider the following code:

message	codeword
00	000000
01	000111
10	100001
11	101010

- What is k ? What is n ?
- How would you encode 10?
- How would you decode 111110?

Error detecting and correcting codes

- Let $\{0,1\}^{n}$ be a code and let n be a positive integer.
- We say that C can detect errors if, for any codeword c and for any number of up to k errors applied to c, we can correctly report error or no error.
- We say that C can correct errors if, for any codeword c and for any number of up to k errors applied to c, we can correctly identify that the original codeword was c .

Practice problem

- Consider the following code:

message	codeword
00	000000
01	000111
10	100001
11	101010

- What is k ? What is n ?
- How would you encode 10?
- How would you decode 111110?
- How many errors can this code detect? Correct?

Example

- Let's think about our original repetition codes
- proposal 1:
- encode: repeat each bit
- 100111111000011111111
- proposal 2:
- encode: triple each bit
- 1001111111000000111111111111
- Assume messages have length 7. What is n ? What is C? And how many errors can C detect? Correct?

Formally

- The minimum distance of a code C is the smallest Hamming distance between two distinct codewords in C.
- The rate of a code is the ratio between the message length (k) and the codeword length (n).
- Example:
- code in which you repeat each of the n bits in a message
- minimum distance: 2
- rate: 1/2

Practice

- The minimum distance of a code C is the smallest Hamming distance between two distinct codewords in .
- The rate of a code is the ratio between the message length (k) and the codeword length (n).
- What is the minimum distance? What is the rate?

1. triple each of the k bits in the message
2. practice codimessage codeword
00000000

01	000111
10	100001
11	101010

Relating the minimum distance and the rate

- Let t be any positive integer. If the minimum distance of a code C is $2 \mathrm{t}+1$, then C can detect 2 t errors and correct t errors.
- Some questions:
${ }^{\text {- How can you design a code that detects as many errors as possible? }}$
- How likely are you to hit the worst case?

