csci54 – discrete math & functional programming RSA continued, error correction

RSA algorithm

- A very widely used public key encryption algorithm
- Three algorithmic components
 - key generation
 - encryption
 - decryption

Our plan

- What is the algorithm?
- Why does it work?
- How to implement it efficiently?

RSA - public key algorithm

Figure 7.27 A schematic of the RSA cryptosystem, where n = pq and $de \equiv_{(p-1)(q-1)} 1$, for prime numbers p and q.

possibly helpful video on RSA by Art of the Problem: https://www.youtube.com/watch?v=wXB-V_Keiu8

RSA: implementing efficiently

- public key: (e,n) and private key: (d,n)
- encrypt(m) = m^e mod n exponentiation
 decrypt(z) = z^d mod n
- key generation:
 - Choose a bit-length k
 - Choose two primes p and q which can be represented w thowite choose?
 - Let n = pq so $\phi(n) = (p-1)(q-1)$
 - Find e such that 0 < e < n and gcd(e, φ(n)) = 1 how to find?
 Find d such that (d*e) mod φ(n) = 1

Implementing RSA – key generation (part 1)

- computing primes p, q that are k bits long
 - pick a random number and test to see if it's prime

how?

```
Fermat's Little Theorem:

If p is prime and gcd(a,p) = 1, then a^{p-1}

1 mod p

Equivalently, a^p a mod p
```

```
prime-test(num):
    for i = 1:maxIter:
        pick a random number 1 < a <
num-1
        if not ( a<sup>num</sup> a mod num )
            return False
        return True
```

Implementing RSA – key generation (part 2)

Finding d, e such that $(d^*e) \mod \phi(n) = 1$

```
if gcd (a,b) = 1 then:
  we say that a and b are <u>relatively prime</u>
  there exists an integer c such that (a*c) mod b = 1
  in fact, gcd(a,b)=1 if and only if there exists an integer c such
  that (a*c) mod b = 1
```


The Moral Character of Cryptographic Work*

Phillip Rogaway

Department of Computer Science University of California, Davis, USA rogaway@cs.ucdavis.edu

> December 2015 (minor revisions March 2016)

Abstract. Cryptography rearranges power: it configures who can do what, from what. This makes cryptography an inherently *political* tool, and it confers on the field an intrinsically *moral* dimension. The Snowden revelations motivate a reassessment of the political and moral positioning of cryptography. They lead one to ask if our inability to effectively address mass surveillance constitutes a failure of our field. I believe that it does. I call for a community-wide effort to develop more effective means to resist mass surveillance. I plead for a reinvention of our disciplinary culture to attend not only to puzzles and math, but, also, to the societal implications of our work.

Keywords: cryptography \cdot ethics \cdot mass surveillance \cdot privacy \cdot Snowden \cdot social responsibility

Transmitting information

- cryptography
- error correction
- compression

Transmitting information – error correction

- goal is to recover message' = message even if codeword' != codeword
- why?
- how?
- assumptions
 - the message is a string of bits
- codeword and codeword' have the same length

Error correction

proposal 1:

- encode: repeat each bit
- 1001111 11000011111111

proposal 2:

- encode: triple each bit
- 1001111

11100000111111111111

How do we evaluate?

Error correcting codes

- sender has a message m in {0,1}^k
- encoding turns m into a codeword c in C={0,1}ⁿ
- receiver gets some c' where |c'| = n and c' may not be in C
- decoding maps c' to closest element of C and decodes to m' {0,1}^k

Definition 4.1: Hamming distance.

Let $x, y \in \{0, 1\}^n$ be two *n*-bit strings. The *Hamming distance* between *x* and *y*, denoted by $\Delta(x, y)$, is the number of positions in which *x* and *y* differ. In other words,

$$\Delta(x,y) = \left| \left\{ i \in \{1,2,\ldots,n\} : x_i \neq y_i \right\} \right|.$$

(Hamming distance is undefined if x and y don't have the same length.)

(110,000)
(000111,010101)

The way mathematics is currently taught it is exceedingly dull. In the calculus book we are currently using on my campus, I found no single problem whose answer I felt the student would care about!

https://amturing.acm.org/award_winners/ hamming_1000652_cfm

Error correcting codes

- sender has a message m in {0,1}^k
- encoding turns m into a codeword c in {0,1}ⁿ
- receiver gets some c' where |c'| = n
- decoding maps c' to closest element of C and decodes to m'
- Definitions:
 - A code is a set $\{0,1\}^n$ for some integer $1 \le k \le n$
 - Any element of {0,1}^k is called a message and the elements of the code are called codewords.

Error correcting codes

- sender has a message m {0,1}^k
- encoding turns m into a codeword
 - c $\{0,1\}^n$ where c and $|| = 2^k$

- receiver gets some c' where |c'| = k and c' may not be in
- decoding maps c' to closest element of and decodes to

m' $\{0,1\}^{k}$

An example

Consider the following code:

message	codeword
00	000000
01	000111
10	100001
11	101010

- What is k? What is n?
- How would you encode 10?
- How would you decode 111110?

Error detecting and correcting codes

Let {0,1}ⁿ be a code and let n be a positive integer.

- We say that C can detect errors if, for any codeword c and for any number of up to k errors applied to c, we can correctly report error or no error.
- We say that C can correct errors if, for any codeword c and for any number of up to k errors applied to c, we can correctly identify that the original codeword was c.

Practice problem

Consider the following code:

message	codeword
00	000000
01	000111
10	100001
11	101010

- What is k? What is n?
- How would you encode 10?
- How would you decode 111110?
- How many errors can this code detect? Correct?

- Let's think about our original repetition codes
- proposal 1:
 - encode: repeat each bit
 - 1001111 11000011111111
- proposal 2:
 - encode: triple each bit
 - 1001111 111000000111111111111
- Assume messages have length 7. What is n? What is C? And how many errors can C detect? Correct?

Formally

- The <u>minimum distance</u> of a code C is the smallest Hamming distance between two distinct codewords in C.
- The <u>rate</u> of a code is the ratio between the message length (k) and the codeword length (n).
- Example:
 - code in which you repeat each of the n bits in a message
 - minimum distance: 2
 - ▶ rate: 1/2

Practice

- The <u>minimum distance</u> of a code C is the smallest Hamming distance between two distinct codewords in .
- The <u>rate</u> of a code is the ratio between the message length (k) and the codeword length (n).
- What is the minimum distance? What is the rate?
 - 1. triple each of the k bits in the message
 - 2. practice cod
 message
 codeword

 00
 000000
 000000

 01
 000111
 100001

 10
 100001
 101010

Relating the minimum distance and the rate

Let t be any positive integer. If the minimum distance of a code C is 2t+1, then C can detect 2t errors and correct t errors.

- Some questions:
 - How can you design a code that detects as many errors as possible?
 - How likely are you to hit the worst case?