csci54 - discrete math \& functional programming RSA

Transmitting information - cryptography

- goal is to keep someone with access to the channel from finding out information about the message.
- assumptions (for now)
' message = message'
- codeword = codeword'
- why?
- how?

Private key cryptography

- Symmetric-key algorithms
- The communicating parties share a piece of secret information (the key k)

Public key cryptography

- asymmetric-key algorithm
- Everyone who wants to receive messages generates a public/private key pair and publishes their public key.
- To send a message to someone, you encrypt it with their public key.

- When you receive a message you decrypt
it with your private key.

RSA algorithm

- A very widely used public key encryption algorithm
- Three algorithmic components
- key generation
- encryption
- decryption
- Our plan
- What is the algorithm?
- Why does it work?
- How to implement it efficiently?

Greatest common divisor (gcd)

- $\operatorname{gcd}(a, b)$ is the largest positive integer that divides both a and b without a remainder.
- Practice:
- $\operatorname{gcd}(14,63)$
- $\operatorname{gcd}(23,5)$
${ }^{-} \operatorname{gcd}(100,9)$
- if $\operatorname{gcd}(a, b)=1$ then:
- a and b have no factors in common
- we say that a and b are relatively prime
- there exists an integer x such that $a x=1(\bmod b)$

RSA algorithm: key generation

1. Choose a bit-length k
2. Choose two primes p and q which can be represented with k bits
3. Let $n=p q$. This means $\phi(n)=(p-1)(q-1)$
4. Find e such that $0<\mathrm{e}<\mathrm{n}$ and $\operatorname{gcd}(\mathrm{e}, \phi(\mathrm{n}))=1$
5. Find d such that $\left(d^{*} e\right) \bmod \phi(n)=1$

RSA encryption: example (part 1)

p : prime number
q : prime number $\mathrm{n}=\mathrm{pq}$

$$
\phi(n)=(p-1)(q-1)
$$

e: $0<e<n$ and $\operatorname{gcd}(e, \phi(n))=1$
$\mathrm{d}:\left(\mathrm{d}^{*} \mathrm{e}\right) \bmod \phi(\mathrm{n})=1$

$$
\begin{aligned}
& p=3 \\
& q=13 \\
& n= \\
& \phi(n)= \\
& e= \\
& d=
\end{aligned}
$$

RSA algorithm: encryption, decryption

- You now have your
- public key: (e,n)
- private key: (d,n)
- If someone wants to send you a message (number) m, they:
- compute and send: encrypt(m) $=\mathrm{m}^{e} \bmod \mathrm{n}$
- When you get a message z, you:
- compute and read: decrypt(z) $=z^{\text {d }}$ mod n

Figure 7.27 A schematic of the RSA cryptosystem, where $n=p q$ and $d e \equiv_{(p-1)(q-1)} 1$, for prime numbers p and q.

RSA encryption: example (part 2)

p : prime number
q : prime number $\mathrm{n}=\mathrm{pq}$

$$
\begin{aligned}
& p=3 \\
& q=13 \\
& n=39 \\
& \phi(n)=24 \\
& e=5 \\
& d=29
\end{aligned}
$$

$$
\phi(n)=(p-1)(q-1)
$$

e: $0<\mathrm{e}<\mathrm{n}$ and $\operatorname{gcd}(\mathrm{e}, \phi(\mathrm{n}))=1$
$\mathrm{d}:(\mathrm{d} * \mathrm{e}) \bmod \phi(\mathrm{n})=1$

What is the public key?
What is the private key?
What do you get if you encrypt 10 ?

RSA encryption: an example

p : prime number
q : prime number $\mathrm{n}=\mathrm{pq}$

$$
\begin{aligned}
& p=3 \\
& q=13 \\
& n=39 \\
& \phi(n)=24 \\
& e=5 \\
& d=29
\end{aligned}
$$

$$
\phi(n)=(p-1)(q-1)
$$

e: $0<\mathrm{e}<\mathrm{n}$ and $\operatorname{gcd}(\mathrm{e}, \phi(\mathrm{n}))=1$
$\mathrm{d}:\left(\mathrm{d}^{*} \mathrm{e}\right) \bmod \phi(\mathrm{n})=1$

What is the public key?
$(5,39)$
What is the private key?
$(29,39)$
What do you get if you encrypt 10?
$10^{5} \bmod 39=4$

Why does the RSA algorithm work?

Figure 7.27 A schematic of the RSA cryptosystem, where $n=p q$ and $d e \equiv_{(p-1)(q-1)} 1$, for prime numbers p and q.

RSA: correctness

- Claim: decrypt(encrypt(m)) = m
- Proof:
decrypt(encrypt(m)) = ...

```
p: prime number
q: prime number
n = pq
\phi(n) = (p-1)(q-1)
e: gcd(e,\phi(n)) = 1
d: (d*e) mod \phi(n)
= 1
encrypt(m) = me
mod n
decrypt(z) = z'd}\operatorname{mod
n
```


RSA: correctness

- Claim: decrypt(encrypt(m)) = m
- Proof:

$$
\begin{aligned}
& \text { decrypt(encrypt(m)) = decrypt(me mod } n \text {) } \\
& =\left(m^{e} \bmod n\right)^{d} \bmod n \\
& =\left(m^{e}\right)^{\mathrm{d}} \bmod \mathrm{n} \\
& =\left(m^{\text {ed }}\right) \bmod n \\
& =\left(m^{k \phi(n)+1}\right) \bmod n \\
& =\left(\mathrm{mm}^{\mathrm{k} \mathrm{\phi}(\mathrm{n})}\right) \bmod \mathrm{n} \\
& =(\bmod \mathrm{n}) *\left(\mathrm{~m}^{k \phi(n)} \bmod \mathrm{n}\right) \\
& \text {... now what? }
\end{aligned}
$$

Fermat and Euler

- Fermat's Little Theorem:
- If p is prime and $\operatorname{gcd}(a, p)=1$, then $a^{p-1}=1 \bmod p$
- Equivalently, $a^{p}=a \bmod p$

- Euler:

- Euler's totient function: $\phi(n)=\mid\{x: x<n$ and $\operatorname{gcd}(n, x)=1\} \mid$
- What is $\phi(n)$ if n is prime?
- Theorem: If $\operatorname{gcd}(a, n)=1$, then $a^{\phi(n)}=1 \bmod n$

RSA: correctness

- Claim: decrypt(encrypt(m)) = m
- Proof:

$$
\begin{aligned}
& \text { decrypt(encrypt(m)) = decrypt(me mod } n \text {) } \\
& =\left(m^{e} \bmod n\right)^{d} \bmod n \\
& =\left(m^{e}\right)^{d} \bmod n \\
& =\left(m^{\text {ed }}\right) \bmod n \\
& =\left(m^{k \phi(n)+1}\right) \bmod n \\
& =\left(\mathrm{mm}^{\mathrm{k} \mathrm{\phi}(\mathrm{n})}\right) \bmod \mathrm{n} \\
& =(m \bmod n) *\left(m^{k \phi(n)} \bmod n\right)
\end{aligned}
$$

p : prime number
q : prime number
$\mathrm{n}=\mathrm{pq}$
$\phi(\mathrm{n})=(\mathrm{p}-1)(\mathrm{q}-1)$
$\mathrm{e}: \operatorname{gcd}(\mathrm{e}, \phi(\mathrm{n}))=1$
$\mathrm{d}: \quad(\mathrm{d} * \mathrm{e}) \bmod \phi(\mathrm{n})$

$$
=1
$$

$$
\text { encrypt(m) }=\mathrm{m}^{\mathrm{e}}
$$

$$
\bmod n
$$

$$
\operatorname{decrypt}(z)=z^{d} \bmod
$$

n

Euler: If $\operatorname{gcd}(a, n)=1$, then $a^{\phi(n)}=1$ $\bmod n$

RSA: correctness

- Claim: decrypt(encrypt(m)) = m
- Proof:

$$
\begin{aligned}
\operatorname{decrypt}(\operatorname{encrypt}(m)) & =\operatorname{decrypt}\left(m^{e} \bmod n\right) \\
= & \left(m^{e} \bmod n\right)^{d} \bmod n \\
= & \left(m^{e}\right)^{d} \bmod n \\
= & \left(m^{e d}\right) \bmod n \\
= & \left(m^{k \phi(n)+1}\right) \bmod n \\
= & \left(m^{k \phi(n)}\right) \bmod n
\end{aligned}
$$

p: prime number
q : prime number
$\mathrm{n}=\mathrm{pq}$
$\phi(n)=(p-1)(q-1)$
$\mathrm{e}: \operatorname{gcd}(\mathrm{e}, \phi(\mathrm{n}))=1$
$\mathrm{d}: \quad\left(\mathrm{d}^{*} \mathrm{e}\right) \bmod \phi(\mathrm{n})$

$$
=1
$$

$$
\text { encrypt(m) }=\mathrm{m}^{\mathrm{e}}
$$

$$
\bmod n
$$

$$
\text { decrypt(z) }=z^{d} \bmod
$$

$$
\mathrm{n}
$$

$=(\mathrm{m} \bmod \mathrm{n}) *\left(\mathrm{~m}^{\mathrm{k} \mathrm{\phi}(\mathrm{n})} \mathrm{mo}\right.$ Euler: If $\operatorname{gcd}(\mathrm{a}, \mathrm{n})=1$, then
$=(\mathrm{m} \bmod \mathrm{n}) *\left(\left(\mathrm{~m}^{\phi(\mathrm{n})}\right)^{\mathrm{k}} \mathrm{m} \frac{\mathrm{a}^{\phi(n)}=1 \mathrm{mod} \mathrm{n}}{}\right.$
$=(m \bmod n)$, as long as $\operatorname{gcd}(m, n)=1$
$=m$, as long as $m<n$

RSA in practice

- What if the message isn't a number?
- Everything is a number
- What if the message isn't a number less than n ?
- Divide it into chunks
- Would you ever flip? Encrypt with private key and decrypt with public key?
- Digital signature

Why is RSA algorithm good?

Figure 7.27 A schematic of the RSA cryptosystem, where $n=p q$ and $d e \equiv_{(p-1)(q-1)} 1$, for prime numbers p and q.

How secure is this?

Security of RSA

- Given encrypt(m), can you figure out m?
- given memod n can you figure out m ?
- issue is that many, many messages m will map to the same encrypted value.
- Given (e,n), can you figure out (d,n)?
- know: (d*e) $\bmod \phi(n)=1$
- but you don't know $\phi(n)$ and there isn't a

```
p: prime number
q: prime number
n = pq
\phi(n) = (p-1)(q-1)
e: gcd(e,\phi(n))=1
d: (d*e) mod \phi(n)
= 1
encrypt(m) = me
mod n
decrypt(z) = zd
n
``` good way to get it unless you can figure out \(p\) and \(q\) from \(n\)
- how expensive is this?

https://crypto.stackexchange.com/questions/1978/how-big-an-rsa-key-is-considered-secure-todav```

