csci54 – discrete math & functional programming
RSA
Transmitting information - cryptography

- goal is to keep someone with access to the channel from finding out information about the message.
- assumptions (for now)
 - message = message'
 - codeword = codeword'
- why?
- how?
Private key cryptography

- Symmetric-key algorithms
- The communicating parties share a piece of secret information (the key k)
Public key cryptography

- asymmetric-key algorithm
- Everyone who wants to receive messages generates a public/private key pair and publishes their public key.
- To send a message to someone, you encrypt it with their public key.
- When you receive a message you decrypt it with your private key.
RSA algorithm

- A very widely used public key encryption algorithm

- Three algorithmic components
 - key generation
 - encryption
 - decryption

- Our plan
 - What is the algorithm?
 - Why does it work?
 - How to implement it efficiently?
Greatest common divisor (gcd)

- gcd(a,b) is the largest positive integer that divides both a and b without a remainder.

Practice:
- gcd(14, 63)
- gcd(23, 5)
- gcd(100, 9)

if gcd (a,b) = 1 then:
- a and b have no factors in common
- we say that a and b are relatively prime
- there exists an integer x such that ax = 1 (mod b)
RSA algorithm: key generation

1. Choose a bit-length k

2. Choose two primes p and q which can be represented with k bits

3. Let $n = pq$. This means $\phi(n) = (p-1)(q-1)$

4. Find e such that $0 < e < n$ and $\gcd(e, \phi(n)) = 1$

5. Find d such that $(d*e) \mod \phi(n) = 1$
RSA encryption: example (part 1)

\[p: \text{prime number} \quad \phi(n) = (p-1)(q-1) \]
\[q: \text{prime number} \quad e: \quad 0 < e < n \text{ and } \gcd(e, \phi(n)) = 1 \]
\[n = pq \quad d: \quad (d*e) \mod \phi(n) = 1 \]

\[p = 3 \]
\[q = 13 \]
\[n = \]
\[\phi(n) = \]
\[e = \]
\[d = \]
RSA algorithm: encryption, decryption

- You now have your
 - public key: (e,n)
 - private key: (d,n)

- If someone wants to send you a message (number) m, they:
 - compute and send: $\text{encrypt}(m) = m^e \mod n$

- When you get a message z, you:
 - compute and read: $\text{decrypt}(z) = z^d \mod n$
Figure 7.27 A schematic of the RSA cryptosystem, where $n = pq$ and $de \equiv_{(p-1)(q-1)} 1$, for prime numbers p and q.
RSA encryption: example (part 2)

p: prime number
q: prime number
n = pq

ϕ(n) = (p-1)(q-1)
e: 0 < e < n and gcd(e,ϕ(n)) = 1
d: (d*e) mod ϕ(n) = 1

p = 3
q = 13
n = 39
ϕ(n) = 24
e = 5
d = 29

What is the public key?
What is the private key?
What do you get if you encrypt 10?
RSA encryption: an example

\[\begin{align*}
\text{p: prime number} & \quad \phi(n) = (p-1)(q-1) \\
\text{q: prime number} & \quad e: \ 0 < e < n \text{ and } \gcd(e, \phi(n)) = 1 \\
n = pq & \quad d: \ (d*e) \mod \phi(n) = 1
\end{align*} \]

\[\begin{align*}
p & = 3 \\
q & = 13 \\
n & = 39 \\
\phi(n) & = 24 \\
e & = 5 \\
d & = 29
\end{align*} \]

What is the public key?
(5, 39)

What is the private key?
(29, 39)

What do you get if you encrypt 10?
\[10^5 \mod 39 = 4 \]
Why does the RSA algorithm work?

Figure 7.27 A schematic of the RSA cryptosystem, where \(n = pq \) and \(de \equiv (p-1)(q-1) \) 1, for prime numbers \(p \) and \(q \).
RSA: correctness

- Claim: $\text{decrypt(encrypt}(m)) = m$
- Proof:
 $\text{decrypt(encrypt}(m)) = ...$

\begin{itemize}
 \item p: prime number
 \item q: prime number
 \item $n = pq$
 \item $\phi(n) = (p-1)(q-1)$
 \item e: $\gcd(e,\phi(n)) = 1$
 \item d: $(d*e) \mod \phi(n) = 1$
 \item $\text{encrypt}(m) = m^e \mod n$
 \item $\text{decrypt}(z) = z^d \mod n$
\end{itemize}
RSA: correctness

- Claim: $\text{decrypt(encrypt(m))} = m$
- Proof:
 $\text{decrypt(encrypt(m))} = \text{decrypt(m}^e \mod n\text{)}$
 $= (m^e \mod n)^d \mod n$
 $= (m^e)^d \mod n$
 $= (m^{ed}) \mod n$
 $= (m^{k\phi(n)+1}) \mod n$
 $= (m^{k\phi(n)}) \mod n$
 $= (m \mod n) \times (m^{k\phi(n)} \mod n)$
 ... now what?

p: prime number
q: prime number
$n = pq$
$\phi(n) = (p-1)(q-1)$
e: $\gcd(e, \phi(n)) = 1$
d: $(d\times e) \mod \phi(n) = 1$
$\text{encrypt(m)} = m^e \mod n$
$\text{decrypt(z)} = z^d \mod n$
Fermat and Euler

- **Fermat's Little Theorem:**
 - If p is prime and $\gcd(a, p) = 1$, then $a^{p-1} = 1 \mod p$
 - Equivalently, $a^p = a \mod p$

- **Euler:**
 - Euler's totient function: $\phi(n) = | \{ x : x < n \text{ and } \gcd(n, x) = 1 \} |$
 - What is $\phi(n)$ if n is prime?
 - Theorem: If $\gcd(a, n) = 1$, then $a^{\phi(n)} = 1 \mod n$
RSA: correctness

- Claim: decrypt(encrypt(m)) = m
- Proof:

 decrypt(encrypt(m)) = decrypt(m^e \mod n)
 = (m^e \mod n)^d \mod n
 = (m^e)^d \mod n
 = (m^{ed}) \mod n
 = (m^{k\phi(n)+1}) \mod n
 = (mm^{k\phi(n)}) \mod n
 = (m \mod n) \times (m^{k\phi(n)} \mod n)

Euler: If \(\gcd(a,n) = 1 \), then \(a^{\phi(n)} \equiv 1 \mod n \)

\(p, q \): prime numbers
\(n = pq \)
\(\phi(n) = (p-1)(q-1) \)
\(e \): \(\gcd(e,\phi(n)) = 1 \)
\(d \): \((d*e) \mod \phi(n) = 1 \)
\(encrypt(m) = m^e \mod n \)
\(decrypt(z) = z^d \mod n \)
RSA: correctness

- Claim: decrypt(encrypt(m)) = m
- Proof:

 decrypt(encrypt(m)) = decrypt(m^e mod n)
 = ((m^e mod n)^d mod n)
 = (m^e d mod n)
 = (m^{ed} mod n)
 = (m^{k\phi(n)+1} mod n)
 = (m^{k\phi(n)} mod n)
 = (m^{k\phi(n)\phi(n)+1} mod n)
 = (m^{k\phi(n)} \mod n)
 = (m \mod n) \times (m^{k\phi(n)} \mod n)
 = (m \mod n) \times ((m^{k\phi(n)})^\phi(n) \mod n)
 = (m \mod n), as long as gcd(m,n) = 1
 = m, as long as m < n

Euler: If gcd(a,n) = 1, then a^{\phi(n)} = 1 \mod n

p: prime number
q: prime number
n = pq
φ(n) = (p-1)(q-1)
e: gcd(e,φ(n)) = 1
d: (d*e) mod φ(n) = 1

encrypt(m) = m^e mod n
decrypt(z) = z^d mod n
RSA in practice

- What if the message isn't a number?
 - Everything is a number

- What if the message isn't a number less than n?
 - Divide it into chunks

- Would you ever flip? Encrypt with private key and decrypt with public key?
 - Digital signature
Why is RSA algorithm good?

Figure 7.27 A schematic of the RSA cryptosystem, where $n = pq$ and $de \equiv (p-1)(q-1) 1$, for prime numbers p and q.

How secure is this?
Security of RSA

- **Given encrypt(m), can you figure out m?**
 - given $m^e \mod n$ can you figure out m?
 - issue is that many, many messages m will map to the same encrypted value.

- **Given (e,n), can you figure out (d,n)?**
 - know: $(d\times e) \mod \phi(n) = 1$
 - but you don't know $\phi(n)$ and there isn't a good way to get it unless you can figure out p and q from n
 - how expensive is this?

p: prime number
q: prime number
$n = pq$

$\phi(n) = (p-1)(q-1)$

e: $\gcd(e,\phi(n)) = 1$

d: $(d\times e) \mod \phi(n) = 1$

encrypt(m) = $m^e \mod n$

decrypt(z) = $z^d \mod n$
>>> pow(2, 1024)
179769313486231590772930519078902473361797697
894230657273430081157732675805500963132708477
322407536021120113879871393357658789768814416
622492847430639474124377767893424865485276302
219601246094119453082952085005768838150682342
462881473913110540827237163350510684586298239
9472459384797163048353563296242242137216

https://crypto.stackexchange.com/questions/1978/how-big-an-rsa-key-is-considered-secure-today