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Transmitting information - cryptography

channel

> goal is to keep someone with access to the channel from
finding out information about the message.

> assumptions (for now)
message = message'
codeword = codeword’

> why?

> how?
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Private key cryptography

> Symmetric-key algorithms

* The communicating parties share a piece of secret information
(the key k)



Public key cryptography
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RSA algorithm
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> Our plan

What is the algorithm?
Why does it work?

How to implement it
offcientiv/?






Greatest common divisor (gcd)

> gcd(a,b) is the largest positive integer that divides both a and
b without a remainder.

> Practice:
gcd(14, 63)
gcd(23, 5)
gcd(100, 9)

> if gcd (a,b) = 1 then:
a and b have no factors in common
we say that a and b are relatively prime
there exists an integer x such that ax = 1 (mod b)







RSA algorithm: key generation
1. Choose a bit-length k

2. Choose two primes p and g which can be represented with k
bits

3. Let n = pg. This means &(n) = (p-1)(g-1)
4. Find e such that 0 < e < n and gcd(e,d(n)) =1

5. Find d such that (d*e) mod ¢(n) =



RSA encryption: example (part 1)

p: prime number
d: prime number

n = pq

¢(n) = (p-1)(g-1)

e:
d:

0 <e<nand gcd(e,p(n)) =1
(d*e) mod ¢(n) =1
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RSA algorithm: encryption, decryption

> You now have your
public key: (e,n)
private key:  (d,n)

> |If someone wants to send you a message (number) m, they:
> compute and send: encrypt(m) = me mod n

> When you get a message z, you:
> compute and read: decrypt(z) = z¢ mod n



Eve (eavesdropper)
trying to decrypt without Bob’s secret key
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Figure 7.27 A schematic of the RSA cryptosystem, where n = pq and de =(,_1)(4—1) 1, for prime numbers p and q.




RSA encryption: example (part 2)

p: prime number
d: prime number

n = pq

¢(n) = (p-1)(g-1)

e:
d:

0 < e < nandgcd(e,d(n)) =1
(d*e) mod ¢p(n) =1
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What is the public key?
What is the private key?

What do you get if you
encrypt 107?




RSA encryption: an example

p: prime number
d: prime number

n = pq

¢(n) = (p-1)(g-1)

e:
d:

0 < e < nandgcd(e,d(n)) =1
(d*e) mod ¢p(n) =1

|
w = W
O W

(n) = 24
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What is the public key?
(5, 39)

What is the private key?
(29, 39)

What do you get if you

encrypt 107?
10> mod 39 =4




Why does the RSA algorithm work?

Eve (eavesdropper)
trying to decrypt without Bob’s secret key
Alice (sender) Bob (recipient)
tructed
laintext ciphertext (recon.s cted)
¢ J{ l plaintext
m ¢ =m°® mod n ¢4 mod n

~

Figure 7.27 A schematic of the RSA cryptosystem, where n = pq and de =(,_1)(4—1) 1, for prime numbers p and q.







RSA: correctness

> Claim: decrypt(encrypt(m)) = m
> Proof:
decrypt(encrypt(m)) = ...

p: prime number
d: prime number

n =pq

¢(n) = (p-1)(g-1)
e: gcd(e,p(n)) =1
d: (d*e) mod ¢(n)
=1

encrypt(m) = me
mod n

decrypt(z) = z¢ mod
n




RSA: correctness

> Claim: decrypt(encrypt(m)) = m

> Proof:
decrypt(encrypt(m))

= decrypt(me mod n)

me mod n)¢mod n

.. how what?

p: prime number
d: prime number

n =pq

o(n) = (p-1)(g-1)
e: gcd(e,p(n)) =1
d: (d*e) mod ¢(n)
=1

encrypt(m) = me
mod n

decrypt(z) = z¢ mod
n

* (mkm mod n)




Fermat and Euler

> Fermat's Little Theorem:
If p is prime and gcd(a,p) =1, then ar! =1 mod p
Equivalently, ap = a mod p

> Euler:
Euler's totient function: ¢(n) =| { X : x <nand gcd(n,x) =1} |
What is ¢(n) if n is prime?
Theorem: If gcd(a,n) = 1, then a¢™ =1 mod n



RSA: correctness

> Claim: decrypt(encrypt(m)) = m

> Proof:
decrypt(encrypt(m))

= (m mod n) * (mkem) mod n)

= decrypt(me mod n)

me mod n)¢mod n

p: prime number
d: prime number

n =pq

o(n) = (p-1)(g-1)
e: gcd(e,p(n)) =1
d: (d*e) mod ¢(n)
=1

encrypt(m) = me
mod n

decrypt(z) = z¢ mod
n

mod n

Euler: If gcd(a,n) = 1, then a¢M=1




RSA: correctness

> Claim: decrypt(encrypt(m)) = m

> Proof:
decrypt(encrypt(m))

= decrypt(me mod n)
mod n)dmod n

m mod n) * (mkM mo
m mod n) * ((meM)km

(m mod n) ,

m,

as longasm<n

p: prime number
d: prime number

n =pq

o(n) = (p-1)(g-1)
e: gcd(e,p(n)) =1
d: (d*e) mod ¢(n)
=1

encrypt(m) = me
mod n

decrypt(z) = z¢ mod
n

Euler: If gcd(a,n) = 1, then
a®™ =1 mod n

as long as gcd(m,n) =1




RSA 1n practice

> What if the message isn't a number?
Everything is a number

> What if the message isn't a number less than n?
Divide it into chunks

> Would you ever flip? Encrypt with private key and decrypt
with public key?
Digital signature






Why is RSA algorithm good?

Eve (eavesdropper)
trying to decrypt without Bob’s secret key
Alice (sender) Bob (recipient)
o T (reconstructed)
plaintext p slatet

l encrypt J{ decrypt l
m d ¢ =m® mod n . ¢? mod n L
£ U-Sing Bﬁb,s Ny r uSi]lg Bﬂb’s 7

public key secret key
(e,n) (d,n)

Figure 7.27 A schematic of the RSA cryptosystem, where n = pq and de =(,_1)(4—1) 1, for prime numbers p and q.

How secure is this?




Security of RSA

> Given encrypt(m), can you figure out m?
given mémod n can you figure out m?

Issue is that many, many messages m will map
to the same encrypted value.

> Given (e,n), can you figure out (d,n)?
know: (d*e) mod ¢(n) =1

but you don't know ¢(n) and there isn't a good
way to get it unless you can figure out p and
g from n

how expensive is this?

p: prime number
d: prime number

n =pq

o(n) = (p-1)(g-1)
e: gcd(e,p(n)) =1
d: (d*e) mod ¢(n)
=1

encrypt(m) = me
mod n

decrypt(z) = z¢ mod
n




Bits

1024 —
896 | —
i ﬁfﬁy
i D
T68 |- —
640 | —
512 |- i
| ag7 463 >>> pow(2,1024)
as4 | 179769313486231590772930519078902473361797697
104 Blacknet 894230657273430081157732675805500963132708477
i Moscard 322407536021120113879871393357658789768814416
26 ) 622492847430639474124377767893424865485276302
1990 1995 2000 2005 2010 2 2710601246094119453082952085005768838150682342
Year 462881473913110540827237163350510684586298239
047245938479716304835356329624224137216

https://crypto.stackexchange.com/questions/1978/how-big-an-rsa-key-is-
considered-secure-todav
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