$\left| \begin{array}{l} \text{csci54}-\text{discrete math} \; \& \; \text{functional programming} \\ \text{RSA} \end{array} \right|$

- goal is to keep someone with access to the channel from finding out information about the message.
- assumptions (for now)
	- \blacktriangleright message = message'
	- codeword = codeword'
- why?
- how?

Private key cryptography

- **Symmetric-key algorithms**
- The communicating parties share a piece of secret information (the key k)

Public key cryptography

- asymmetric-key algorithm
- **Everyone who wants to receive messages** generates a public/private key pair and publishes their public key.
- \triangleright To send a message to someone, you encrypt it with their public key.
- When you receive a message you decrypt
- it with your private key.

Home

Halp

' Global Directory

Verified Key Servic

The PGP Global Directory is a free service designed to make it easier to find and trust the universe of PGP keys. Publish your key today and allow others to start sending you secure email

https://keyserver.pgp.com/vkd/GetWelcomeScr

RSA algorithm

- ▶ A very widely used public key encryption algorithm
- Three algorithmic components
	- \blacktriangleright key generation
	- \triangleright encryption
	- **b** decryption

▶ Our plan

- ▶ What is the algorithm?
- ▶ Why does it work?
- How to implement it efficiently?

Greatest common divisor (gcd)

- \triangleright gcd(a,b) is the largest positive integer that divides both a and b without a remainder.
- ▶ Practice:
	- \blacktriangleright gcd(14, 63)
	- \blacktriangleright gcd(23, 5)
	- \blacktriangleright gcd(100, 9)
- \triangleright if gcd (a,b) = 1 then:
	- \triangleright a and b have no factors in common
	- we say that a and b are relatively prime
	- there exists an integer x such that $ax = 1 \pmod{b}$

RSA algorithm: key generation

- 1. Choose a bit-length k
- 2. Choose two primes p and q which can be represented with k bits
- 3. Let $n = pq$. This means $\phi(n) = (p-1)(q-1)$
- 4. Find e such that $0 < e < n$ and gcd(e, $\phi(n)$) = 1
- 5. Find d such that (d^*e) mod $\phi(n) = 1$

RSA encryption: example (part 1)

p: prime number q: prime number $n = pq$

 $\phi(n) = (p-1)(q-1)$ e: $0 < e < n$ and gcd(e, $\phi(n)$) = 1 d: $(d*e) \mod \phi(n) = 1$

$$
p = 3
$$

\n
$$
q = 13
$$

\n
$$
n =
$$

\n
$$
\phi(n) =
$$

\n
$$
e =
$$

\n
$$
d =
$$

RSA algorithm: encryption, decryption

- ▶ You now have your
	- public key: (e,n)
	- **Private key:** (d,n)
- If someone wants to send you a message (number) m , they: compute and send: encrypt(m) = m^e mod n
- When you get a message z, you:
- compute and read: d ecrypt(z) = z^d mod n

Figure 7.27 A schematic of the RSA cryptosystem, where $n = pq$ and $de \equiv_{(p-1)(q-1)} 1$, for prime numbers p and q.

RSA encryption: example (part 2)

p: prime number q: prime number $n = pq$

 $\phi(n) = (p-1)(q-1)$ e: $0 < e < n$ and gcd(e, $φ(n)$) = 1 d: $(d*e) \mod \phi(n) = 1$

 $p = 3$ $q = 13$ $n = 39$ $φ(n) = 24$ $e = 5$ $d = 29$

What is the public key?

What is the private key?

What do you get if you encrypt 10?

RSA encryption: an example

p: prime number q: prime number $n = pq$

```
\phi(n) = (p-1)(q-1)e: 0 < e < n and gcd(e,\phi(n)) = 1
d: (d*e) \mod \phi(n) = 1
```
 $p = 3$ $q = 13$ $n = 39$ $φ(n) = 24$ $e = 5$ $d = 29$

What is the public key? (5, 39) What is the private key? (29, 39) What do you get if you encrypt 10? $10⁵$ mod 39 = 4

Why does the RSA algorithm work?

Figure 7.27 A schematic of the RSA cryptosystem, where $n = pq$ and $de \equiv_{(p-1)(q-1)} 1$, for prime numbers p and q.

RSA: correctness

- \triangleright Claim: decrypt(encrypt(m)) = m
- Proof:

 $decrypt(encrypt(m)) = ...$

p: prime number q: prime number $n = pq$ $\phi(n) = (p-1)(q-1)$ e: gcd(e, $φ(n)$) = 1 d: $(d*e) \mod \phi(n)$ $= 1$ $\text{encryption} = \text{m}^{\text{e}}$ mod n $decrypt(z) = z^d \text{ mod } z$ n

 \triangleright Claim: decrypt(encrypt(m)) = m

▶ Proof:

decrypt(encrypt(m)) = decrypt(m^e mod n)

- $=$ (m^e mod n)^d mod n
	- = (m^e) d mod n
		- $=$ (med) mod n
		- $=$ (m^{k ϕ (n)+1) mod n}
		- $=$ (mm^{k $\phi(n)$}) mod n
		- $=$ (m mod n) $*$ (m^{k ϕ (n)} mod n)

... now what?

```
p: prime number
q: prime number
n = pq\phi(n) = (p-1)(q-1)e: gcd(e, \phi(n)) = 1d: (d*e) \mod \phi(n)= 1\text{encryption} = \text{m}^{\text{e}}mod n
decrypt(z) = z<sup>d</sup> \text{ mod } zn
```
Fermat and Euler

Fermat's Little Theorem:

- If p is prime and gcd(a,p) = 1, then $a^{p-1} = 1$ mod p
- Equivalently, $a^p = a mod p$

- ► Euler:
	- Euler's totient function: $\phi(n) = |\{ x : x < n \text{ and } gcd(n,x) = 1 \}|$
		- \triangleright What is $\varphi(n)$ if n is prime?
	- Theorem: If gcd(a,n) = 1, then $a^{\phi(n)} = 1$ mod n


```
p: prime number
q: prime number
n = pq\phi(n) = (p-1)(q-1)e: gcd(e,φ(n)) = 1
d: (d*e) \mod \phi(n)= 1\text{encryption} = \text{m}^{\text{e}}mod n
decrypt(z) = z<sup>d</sup> \text{ mod } zn
```


RSA in practice

▶ What if the message isn't a number?

- **Everything is a number**
- What if the message isn't a number less than n?
	- **Divide it into chunks**
- Would you ever flip? Encrypt with private key and decrypt with public key?
	- **Digital signature**

Why is RSA algorithm good?

Figure 7.27 A schematic of the RSA cryptosystem, where $n = pq$ and $de \equiv_{(p-1)(q-1)} 1$, for prime numbers p and q.

How secure is this?

- Given encrypt(m), can you figure out m?
	- **given memod n can you figure out m?**
	- \triangleright issue is that many, many messages m will map to the same encrypted value.
- Given (e,n), can you figure out (d,n)?
	- know: $(d*e) \mod \phi(n) = 1$
	- but you don't know ϕ(n) and there isn't a good way to get it unless you can figure out p and q from n
	- how expensive is this?

```
p: prime number
q: prime number
n = pq\phi(n) = (p-1)(q-1)e: gcd(e,φ(n)) = 1
d: (d*e) \mod \phi(n)= 1\text{encryption} = \text{m}^{\text{e}}mod n
decrypt(z) = z<sup>d</sup> \text{ mod } zn
```


https://crypto.stackexchange.com/questions/1978/how-big-an-rsa-key-isconsidered-secure-today