csci54 – discrete math & functional programming RSA

- goal is to keep someone with access to the channel from finding out information about the message.
- assumptions (for now)
 - message = message'
 - codeword = codeword'
- why?
- how?

Private key cryptography

- Symmetric-key algorithms
- The communicating parties share a piece of secret information (the key k)

Public key cryptography

- asymmetric-key algorithm
- Everyone who wants to receive messages generates a public/private key pair and publishes their public key.
- To send a message to someone, you encrypt it with their public key.
- When you receive a message you decrypt
- it with your private key.

Home

Help

Global Directory

Verified Key Servic

The PGP Global Directory is a free service designed to make it easier to find and trust the universe of PGP keys. Publish your key today and allow others to start sending you secure email.

https://keyserver.pgp.com/vkd/GetWelcomeScr

RSA algorithm

- A very widely used public key encryption algorithm
- Three algorithmic components
 - key generation
 - encryption
 - decryption

Our plan

- What is the algorithm?
- Why does it work?
- How to implement it efficiently?

Greatest common divisor (gcd)

- gcd(a,b) is the largest positive integer that divides both a and b without a remainder.
- Practice:
 - gcd(14, 63)
 - gcd(23, 5)
 - gcd(100, 9)
- if gcd (a,b) = 1 then:
 - a and b have no factors in common
 - we say that a and b are <u>relatively prime</u>
 - there exists an integer x such that ax = 1 (mod b)

RSA algorithm: key generation

- 1. Choose a bit-length k
- 2. Choose two primes p and q which can be represented with k bits
- 3. Let n = pq. This means $\phi(n) = (p-1)(q-1)$
- 4. Find e such that 0 < e < n and $gcd(e,\phi(n)) = 1$
- 5. Find d such that $(d^*e) \mod \phi(n) = 1$

RSA encryption: example (part 1)

p: prime numberq: prime numbern = pq

 $\begin{array}{l} \varphi(n) = (p-1)(q-1) \\ e: \ 0 < e < n \ and \ gcd(e,\varphi(n)) = 1 \\ d: \ (d^*e) \ mod \ \varphi(n) = 1 \end{array}$

RSA algorithm: encryption, decryption

- You now have your
 - public key: (e,n)
 - private key: (d,n)
- If someone wants to send you a message (number) m, they:
 compute and send: encrypt(m) = m^e mod n
- When you get a message z, you:
- compute and read: decrypt(z) = z^d mod n

Figure 7.27 A schematic of the RSA cryptosystem, where n = pq and $de \equiv_{(p-1)(q-1)} 1$, for prime numbers p and q.

RSA encryption: example (part 2)

p: prime numberq: prime numbern = pq

 $\phi(n) = (p-1)(q-1)$ e: 0 < e < n and gcd(e, $\phi(n)$) = 1 d: (d*e) mod $\phi(n) = 1$

p = 3 q = 13 n = 39 $\phi(n) = 24$ e = 5d = 29

What is the public key?

What is the private key?

What do you get if you encrypt 10?

RSA encryption: an example

p: prime numberq: prime numbern = pq

 $\phi(n) = (p-1)(q-1)$ e: 0 < e < n and gcd(e, $\phi(n)$) = 1 d: (d*e) mod $\phi(n) = 1$

p = 3 q = 13 n = 39 $\phi(n) = 24$ e = 5d = 29

What is the public key? (5, 39) What is the private key? (29, 39) What do you get if you encrypt 10? 10⁵ mod 39 = 4

Why does the RSA algorithm work?

Figure 7.27 A schematic of the RSA cryptosystem, where n = pq and $de \equiv_{(p-1)(q-1)} 1$, for prime numbers p and q.

RSA: correctness

- Claim: decrypt(encrypt(m)) = m
- Proof:

decrypt(encrypt(m)) = ...

p: prime number q: prime number n = pq $\phi(n) = (p-1)(q-1)$ e: $gcd(e,\phi(n)) = 1$ d: $(d^*e) \mod \phi(n)$ = 1 $encrypt(m) = m^{e}$ mod n $decrypt(z) = z^d \mod z^d$ n

RSA: correctness

Claim: decrypt(encrypt(m)) = m

Proof:

 $decrypt(encrypt(m)) = decrypt(m^e \mod n)$

- $= (m^e \mod n)^d \mod n$
- $= (m^e)^d \mod n$
- = (m^{ed}) mod n
- = ($m^{k\phi(n)+1}$) mod n
- = ($mm^{k\phi(n)}$) mod n
- = (m mod n) * ($m^{k\phi(n)} \mod n$)

... now what?

```
p: prime number
q: prime number
n = pq
\phi(n) = (p-1)(q-1)
e: gcd(e,\phi(n)) = 1
d: (d*e) \mod \phi(n)
= 1
encrypt(m) = m^{e}
mod n
decrypt(z) = z^d \mod z
n
```

Fermat and Euler

Fermat's Little Theorem:

- ▶ If p is prime and gcd(a,p) = 1, then $a^{p-1} = 1 \mod p$
- Equivalently, a^p = a mod p

- Euler:
 - Euler's totient function: $\phi(n) = | \{ x : x < n \text{ and } gcd(n,x) = 1 \} |$
 - What is \u03c6(n) if n is prime?
 - ► Theorem: If gcd(a,n) = 1, then $a^{\phi(n)} = 1 \mod n$

RSA: correctness

```
p: prime number
q: prime number
n = pq
\phi(n) = (p-1)(q-1)
e: gcd(e,\phi(n)) = 1
d: (d*e) \mod \phi(n)
= 1
encrypt(m) = m^{e}
mod n
decrypt(z) = z^d \mod z
n
```

```
= (m \mod n) * (m^{k\phi(n)} \mod n)
```

```
Euler: If gcd(a,n) = 1, then a^{\phi(n)}=1
mod n
```

RSA: correctness		p: prime number q: prime number n = pq
Claim: decrypt(encrypt(m)) = m		
Proof: decrypt(encrypt(m)	$) = decrypt(m^e \mod n)$	$\phi(n) = (p-1)(q-1)$ e: gcd(e, $\phi(n)$) = 1 d: (d*e) mod $\phi(n)$ = 1
	= $(m^e \mod n)^d \mod n$ = $(m^e)^d \mod n$	
	= $(m^{ed}) \mod n$ = $(m^{k\phi(n)+1}) \mod n$ = $(mm^{k\phi(n)}) \mod n$	$encrypt(m) = m^{e}$ mod n $decrypt(z) = z^{d} mod$ n
	= (m mod n) * (m ^{kϕ(n)} mo Euler: If gcd(a,n) = 1, then a ^{ϕ(n)} = 1 mod n	
	= (m mod n), as long as $gcd(n)$ = m, as long as m < n	n,n) = 1

RSA in practice

What if the message isn't a number?

- Everything is a number
- What if the message isn't a number less than n?
 - Divide it into chunks
- Would you ever flip? Encrypt with private key and decrypt with public key?
 - Digital signature

Why is RSA algorithm good?

Figure 7.27 A schematic of the RSA cryptosystem, where n = pq and $de \equiv_{(p-1)(q-1)} 1$, for prime numbers p and q.

How secure is this?

- Given encrypt(m), can you figure out m?
 - given memod n can you figure out m?
 - issue is that many, many messages m will map to the same encrypted value.
- Given (e,n), can you figure out (d,n)?
 - ▶ know: (d*e) mod φ(n) = 1
 - but you don't know \u03c6(n) and there isn't a good way to get it unless you can figure out p and q from n
 - how expensive is this?

```
p: prime number
q: prime number
n = pq
\phi(n) = (p-1)(q-1)
e: gcd(e,\phi(n)) = 1
d: (d*e) \mod \phi(n)
= 1
encrypt(m) = m^{e}
mod n
decrypt(z) = z^d \mod z
n
```


https://crypto.stackexchange.com/questions/1978/how-big-an-rsa-key-isconsidered-secure-todav