In-Class Worksheet Discrete Math & Functional Programming— CSCI 054— Spring 2024 Instructor: Osborn

Consider the following relations. Is each one reflexive, symmetric, and/or transitive? If it's all three and therefore an equivalence relation, describe the equivalence classes.

1. S = all juniors and seniors currently enrolled at Pomona. $(x, y) \in R_1$ if they share a major.

2. $S = \mathbb{Z}$. $(x, y) \in R_2$ if x = y.

3.
$$S = \{1, 2, 3, 4, 5\}$$
. $R_3 = \{(1, 5), (2, 2), (2, 4), (4, 1), (4, 2)\}$.

Let S be the set of all students currently enrolled at Pomona. Define an equivalence relation on S that isn't one of the ones discussed in lecture on Monday.

Consider the relation $R = \{(1,5), (2,2), (2,4), (4,1), (4,2)\}$ on $\{1,2,3,4,5\}$. What is the reflexive closure? What is the symmetric closure? What is the transitive closure?

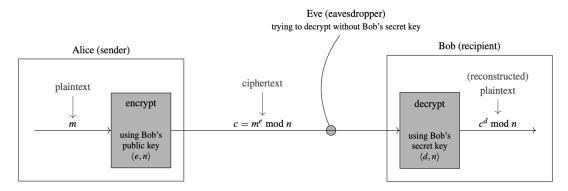


Figure 7.27 A schematic of the RSA cryptosystem, where n = pq and $de \equiv_{(p-1)(q-1)} 1$, for prime numbers p and q.

Given p = 3 and q = 13, what are:

- n
- $\phi(n)$
- e
- d
- public key:
- private key:

What do you get if you encrypt 10?