Countability and Uncountability

Joseph C Osborn

November 19, 2024

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Outline

Countability

The Uncountable

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

Reminder

If f is an injection from A to B, |A| <= |B|
We can pick a different output for each input...
so there are at least as many outputs as inputs
If f is a surjection from A to B, |A| >= |B|
We can hit every output with some input...
so we have at least as many inputs as outputs
If f is a bijection from A to B, |A| = |B|
Greater-or-equal ∧ less-or-equal is just equal

Practice

- Claim: the left set has the same cardinality as the one on the right.
 - Prove it by finding an injection and a surjection (or a single bijection) to some third set (maybe the nats!), and use a transitivity argument
- Perfect squares = |powers of two|
- |Pairs of natural numbers| = |number of possible finite-length bitstrings|
- ▶ |Bool -> Bool -> Nat| ? |natural numbers|
 - Hint: How many possible pairs of inputs can this function take? What is this question really asking?

What isn't Countable?

Sets are countable if their cardinality is <= that of N
Is any set bigger than the natural numbers?

The Real Numbers

Review:

- Natural numbers (N): "counting numbers"
- Integers (Z), "Zahlen": positive and negative natural numbers
- Rationals (Q): Ratio between two integers, as simplified as possible
 - These are a subset of the pairs of integers, so they're definitely countable
- ► Irrationals (no fun letter): Numbers that can't be represented as ratios of integers, e.g. pi, e, √2, ...
- ▶ Reals (R): Rationals \cup Irrationals
 - Numbers described as infinite sequences of digits

Are the reals countable?

- Are the reals countably infinite?
 - We could try to find a bijection with natural numbers...
 spoiler: we can't.
- Let's use a proof by contradiction:
 - Suppose the reals are countable, i.e. |R| <= |N| (or equivalently |N| >= |R|)
 - In fact, let's focus on the reals between 0 and 1, not including 1.
 - If that range is bigger than N, then surely all of R is also bigger than N.
 - Then there must be a surjection f : N -> R{0..1}, which enumerates every real between 0 and 1 without missing any.
 - We'll show that leads to a contradiction.

Cantor's Diagonal Argument

Here is an example of a surjection from N->R $\{0..1\}$. This specific example is just to illustrate a gimmick. We don't actually care what f is, all functions f will have the same problem.

х		Уo	У1	У2	Уз	У4	У5	У6	У7	
0	0.	0	0	0	1	1	1	0	0	
1	0.	1	1	0	1	1	0	1	1	
2	0.	2	3	0	1	4	3	2	1	
3	0.	0	0	1	1	2	5	5	2	
4	0.	5	9	2	1	8	9	3	1	
5	0.	9	8	2	4	5	4	1	0	

Gimmick Time

Let's name a number g (g is for gimmick!). G is a real number between 0 and 1, and it's defined like this:

- 1. Its only digit before the decimal is 0.
- 2. Its first digit after the decimal (its "0th digit") is the first digit after the decimal of whatever number f(0) is, plus 1 (wrapping around to 0 if the result is 10), i.e. $f(0)_0 + 1 \mod 10$.

- 3. Its second decimal digit (its "1st digit") is the second decimal digit of f(1), plus one, mod 10.
- 4. And so on: $g_n = (f(n)_n + 1) \mod 10$

Since g is a real number, and f is a surjection, there must be some number k so that f(k) = g.

We know from the definition of g that g's kth digit must be different from f(k)'s kth digit.

But g=f(k)! This is a contradiction, so either g isn't a real number or f can't be a surjection.

g is definitely a real, so f must not be a surjection. That means that there is no surjection from N to our subset of R, so our subset must be strictly bigger than N.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Another diagonal proof

- Are infinite bitstrings countably infinite?
- Let's use a proof by contradiction:
 - Suppose that the set of infinite bitstrings is countable,
 i.e. |B| <= |N| (or equivalently |N| >= |B|)
 - Then there must be a surjection f : N -> B, which enumerates every bitstring without missing any.
 - We'll show that leads to a contradiction.

Here is an example of a surjection from N->B.

х	y ₀	У 1	У ₂	У3	У4	У5	У6	У7	
0	0	0	0	1	1	1	0	0	
1	1	1	0	1	1	0	1	1	
2	1	0	0	1	0	1	0	1	
3	0	0	1	1	0	1	1	0	
4	1	1	1	1	1	1	1	1	
5	0	0	0	0	0	0	1	0	

Gimmick Time

Let's name a number g (g is for gimmick!). G is an infinite bitstring defined so that $g(n) = \dots$ (Remember: Our gimmick for reals was $g(n) = (f(n)_n + 1) \mod 10$)

Gimmick Time

G is an infinite bitstring defined so that g(n)=1 - $f(n)_n$ Which leads to a contradiction because. .

Which leads to a contradiction because there must be some k so that f(k) = g, since f is a surjection. But then g(k) differs from itself at index k: $g_k = 1 - f(k)_k$, but f(k) = g, so $g_k = 1 - g_k$. This is a contradiction; but g is definitely an infinite bitstring. So our assumption that such a surjection f exists is impossible, so the set of infinite bitstrings must be uncountably infinite.

Final thoughts

Using the same techniques we saw earlier, we can prove lots of stuff:

- There are as many real numbers as there are reals between 0 and 1
- There are as many reals as there are pairs of reals
- ▶ The set of functions Bool -> N is countably infinite
- ▶ The set of functions N -> Bool is uncountably infinite
- ... and more!
- Intuition: Infinitely large sets of infinitely described objects are uncountably infinite
 - Infinitely large sets of finitely described objects are countably infinite

Other weird stuff

- Rationals are dense: between any two rationals are infinitely many rationals
- Reals are also dense
- Between any two rationals are infinitely many reals
 - Sure, all rationals are also reals
- Between any two reals are infinitely many rationals
 - ...
 - Even though there are uncountably many reals and countably many rationals!
- Rationals form (countably) infinitely many points on the number line
 - but this doesn't give you a continuum of numbers!

Other countability techniques

Instead of proving a function f exists from A -> N...

- Find a function N -> A
- Find a bijection or injection A -> B where we know B is countably infinite

Instead of doing a diagonal proof for uncountability...

- Find a function A -> R which is a bijection
- Find a function R -> A which is an injection
 - "A is at least as big as R"