proofs continued
looking ahead

▶ this week:
 ▶ No problem set, but still have group work

▶ next week: spring break!

▶ checkpoint 2:
 ▶ in class on Thursday 3/28
 ▶ accommodations: schedule with SDRC asap
on proof writing

proof: a convincing argument written for a particular audience

guidelines:

- unless it's a direct proof without cases, state what proof technique you're using
- define variables
- have a concluding statement
proving "for all" statements

- claim: if \(x \) and \(y \) are even integers, then \(x+y \) is an even integer
- claim: given any two integers \(x \) and \(y \), if \(x \) and \(y \) are even then \(x+y \) is even.

observation on proving "for all" statements

- "let \(x \) be an element of \(S \)"
- since true for any element of \(S \), must be true for all elements of \(S \)
Above all, remember that your primary goal in writing is communication. Just as when you are programming, it is possible to write two solutions to a problem that both “work,” but which differ tremendously in readability. Document! Comment your code; explain why this statement follows from previous statements. Make your proofs—and your code!—a pleasure to read.
direct proof: example (v1)

- claim: If a number is odd, then its binary representation ends with a 1.

- proof:
 - Let k be an arbitrary odd integer.
 - Then there exists an integer r such that $k=2r+1$.
 - Now let $d_n...d_2d_1d_0$ be the binary representation of r.
 - The binary representation of $2r$ is then $d_n...d_2d_1d_00$, and
 - The binary representation of $k=2r+1= d_n...d_2d_1d_01$.

- conclusion: Therefore the binary representation of any odd integer ends with a 1.
direct proof: example (v2)

claim: If a number is odd, then its binary representation ends with a 1.

proof:

Let \(k \) be an arbitrary odd integer.

Then there exists an integer \(r \) such that \(k = 2r + 1 \).

Now let \(d_n \ldots d_2 d_1 d_0 \) be the binary representation of \(r \).

This means \(r = \ldots \)

So \(2r = \ldots \)

The binary representation of \(2r \) is therefore \(d_n \ldots d_2 d_1 d_0 0 \), and

The binary representation of \(k = 2r + 1 = d_n \ldots d_2 d_1 d_0 1 \).

conclusion: Therefore the binary representation of any odd integer ends with a 1.
claim: If a number is odd, then its binary representation ends with a 1.

proof:
- Let k be an arbitrary odd integer.
- Then there exists an integer r such that $k = 2r + 1$.
- Now let $d_n \ldots d_2 d_1 d_0$ be the binary representation of r.
 - This means $r = \ldots$
 - So $2r = \ldots$
 - $= \ldots$
- The binary representation of $2r$ is therefore $d_n \ldots d_2 d_1 d_0 0$, and
- The binary representation of $k = 2r + 1 = d_n \ldots d_2 d_1 d_0 1$.

conclusion: Therefore the binary representation of any odd integer ends with a 1.
if and only if: example

- prove the following claim by proving each direction separately. Use a direct proof in one direction and a proof of the contrapositive in the other.

- claim: For all integers j and k, j and k are odd if and only if their product jk is odd.

- proof: Let j and k be arbitrary integers.
 - () If j and k are odd, then jk is odd
 - () If jk is odd, then j and k are odd

Therefore for all integers j and k, j and k are odd if and only if jk is odd.
a way that things can go wrong

Claim: \(1 = 0\)

Proof. Suppose that \(1 = 0\). Then:

\[
\begin{align*}
1 &= 0 \\
\text{therefore, multiplying both sides by 0} &\quad 0 \cdot 1 = 0 \cdot 0 \\
\text{and therefore,} &\quad 0 = 0.
\end{align*}
\]

And, indeed, \(0 = 0\). Thus the assumption that \(1 = 0\) was correct, and the theorem follows.

More examples, discussion in Chapter 4.5 of the book
proof techniques

▷ direct proof:
 ▷ start with known facts. repeatedly infer additional new facts until can conclude what you want to show.
 ▷ may divide work into cases

▷ proof of the contrapositive:
 ▷ if trying to prove an implication, prove the contrapositive instead

▷ proof by contradiction
 ▷ Claim: p is logically equivalent to ¬p→⊥
proof techniques

- direct proof:
 - start with known facts. repeatedly infer additional new facts until can conclude what you want to show.
 - may divide work into cases

- proof of the contrapositive:
 - if trying to prove an implication, prove the contrapositive instead

- proof by contradiction
 - if trying to prove a statement, assume the statement is not true and prove something that is clearly false. From this conclude that the original statement must be true.
proof by contradiction – logic and example

- the proposition p is logically equivalent to $\neg p \rightarrow \bot$
- claim: The statement $\exists y: \forall x: y > x$ is false.
- proof by contradiction:
 - assume the statement is True; we’ll show this leads to a contradiction
 - let y^* be a y for which the statement is True.
 - then y^* must be larger than all real numbers x.
 - however, y^* is also a real number, so $y^* > y^*$.
 - this is a contradiction so the assumption that the statement is True must be wrong.
 - therefore the original statement is False.
Example from csci101

Theorem: If L is a context-free language, then:

$$\exists k \geq 1 \ (\forall \text{ strings } w \in L, \text{ where } |w| \geq k \ (\exists u, v, x, y, z \ (w = uvxyz, \
vy \neq \varepsilon,
|vxy| \leq k, \text{ and }
\forall q \geq 0 \ (uv^qxy^qz \text{ is in } L))))$$

- used to prove that a language L is **not** context free
 - proof by contradiction: assume that L is context free. Then there must be a value k that satisfies the above theorem.
 - now show that such a k cannot exist