csci54 – discrete math & functional programming
proofs: example, counterexample, direct, contrapositive
discrete math so far

- sets
- introductions to propositional and predicate logic
- reflections on what it means to prove something

this week:
- proof techniques
- group meeting Thursday/Friday
- problem set due this Sunday
 - can discuss ideas, but must not look at anyone else's written up solution (in latex, on a whiteboard, etc)
Negating nested quantifiers

Consider the following statement:

$$\forall i \in \{1, 2, \ldots, n\} : [\exists j \in \{1, 2, \ldots, n\} : (i \neq j) \land (A[i] = A[j])]$$

Simplify the negation:

$$\neg \forall i \in \{1, 2, \ldots, n\} : [\exists j \in \{1, 2, \ldots, n\} : (i \neq j) \land (A[i] = A[j])]$$
Example from csci101

Theorem: If L is a context-free language, then:

\[\exists k \geq 1 \ (\forall \text{ strings } w \in L, \text{ where } |w| \geq k \ (\exists u, v, x, y, z \ (w = uvxyz, vy \neq \varepsilon, |vy| \leq k, \text{ and } \forall q \geq 0 \ (uv^qxy^qz \text{ is in } L))). \]
\[
\forall x \in S : [P(x) \lor \neg P(x)]
\]

\[
\neg [\forall x \in S : P(x)] \iff [\exists x \in S : \neg P(x)]
\]

De Morgan’s Laws (quantified form)

\[
\neg [\exists x \in S : P(x)] \iff [\forall x \in S : \neg P(x)]
\]

\[
[\forall x \in S : P(x)] \Rightarrow [\exists x \in S : P(x)]
\]

if the set S is nonempty

\[
\forall x \in \emptyset : P(x)
\]

Vacuous quantification

\[
\neg [\exists x \in \emptyset : P(x)]
\]

\[
[\exists x \in S : P(x) \lor Q(x)] \iff [\exists x \in S : P(x)] \lor [\exists x \in S : Q(x)]
\]

\[
[\forall x \in S : P(x) \land Q(x)] \iff [\forall x \in S : P(x)] \land [\forall x \in S : Q(x)]
\]

\[
[\exists x \in S : P(x) \land Q(x)] \Rightarrow [\exists x \in S : P(x)] \land [\exists x \in S : Q(x)]
\]

\[
[\forall x \in S : P(x) \lor Q(x)] \iff [\forall x \in S : P(x)] \lor [\forall x \in S : Q(x)]
\]

\[
[\forall x \in S : P(x) \Rightarrow Q(x)] \land [\forall x \in S : P(x)] \Rightarrow [\forall x \in S : Q(x)]
\]

\[
[\forall x \in \{y \in S : P(y)\} : Q(x)] \iff [\forall x \in S : P(x) \Rightarrow Q(x)]
\]

\[
[\exists x \in \{y \in S : P(y)\} : Q(x)] \iff [\exists x \in S : P(x) \land Q(x)]
\]

from Figure 3.21 in CDMCS
On proofs

- A proof of a proposition is a convincing argument that the proposition is true.

- Assumes that you are trying to convince a particular audience
 - For this class assume you are writing for a classmate
some definitions

- an integer k is **even** if and only if there exists an integer r such that $k=2r$
- an integer k is **odd** if and only if there exists an integer r such that $k=2r+1$
- $k|m$ if and only if there exists an integer r such that $m=kr$. This is equivalent to saying that "$m \mod k = 0$" or that "k evenly divides m".
- an integer $k>1$ is **prime** if the only positive integers that evenly divide k are 1 and k itself.
- an integer $k>1$ is **composite** if it is not prime.
- an integer k is a **perfect square** if and only if there exists an integer r such that $k=r^2$

section 2.2.6 in CDMCS
proof techniques (by giving an example)

- proof by construction / proof by example:
 - given a claim that there exists \(x \) such that \(P(x) \) is true, can prove by constructing such an \(x \)

 there exists a prime number larger than 20

- disproof by counterexample:
 - given a claim that some \(P(x) \) is true for all \(x \), can disprove by showing there exists an element \(y \) where \(P(y) \) is not true.

 for all positive integers \(n \),
 \[2n = n^2 \]
Claim: no positive integer is expressible in two different ways as the sum of two perfect squares.

Reminder: an integer k is a perfect square if and only if there exists an integer r such that $k=r^2$.
proof techniques

▷ direct proof:
 ▶ start with known facts. repeatedly infer additional new facts until can conclude what you want to show.
 ▶ may divide work into cases

▷ proof of the contrapositive
 ▶ if trying to prove an implication, prove the contrapositive instead

▷ proof by contradiction
 ▶ if trying to prove a statement, assume the statement is not true and prove something that is clearly false. From this conclude that the original statement must be true.
proof techniques

▶ direct proof:
 ▶ start with known facts. repeatedly infer additional new facts until can conclude what you want to show.
 ▶ may divide work into cases

▶ proof of the contrapositive:
 ▶ if trying to prove an implication, prove the contrapositive instead

▶ proof by contradiction
 ▶ if trying to prove a statement, assume the statement is not true and prove something that is clearly false. From this conclude that the original statement must be true.
direct proof + cases: example

- **claim:** let n be any integer. Then $n(n+1)^2$ is even.

- **proof:** The proof is by cases. Given an integer n, n is either even or odd.
 - If n is even, then $n = 2r$ for some integer r. Then

 $$n(n+1)^2 = 2r(2r+1)^2 = 2r(2r+1)^2,$$

 which is even.
 - If n is odd, then $n = 2r+1$ for some integer r. Then

 $$n(n+1)^2 = (2r+1)(2r+2)^2 = (2r+1)(2r+2)(2r+2) = 2((2r+1)(r+1)(2r+2)),$$

 which is even.
 - Since $n(n+1)^2$ is even regardless of whether n is even or odd, $n(n+1)^2$ is even for all integers n.

- Conclude by stating what you've shown
direct proof : example

- claim: the binary representation of any odd integer ends with a 1.
representing numbers in different bases

- In base 10 (decimal), every number is written as a sum of powers of 10.
 - For example, $205 = 2 \times 10^2 + 0 \times 10^1 + 5 \times 10^0$
 - More generally, in base 10:

- In base 2 (binary), every number is written as a sum of powers of 2.
 - For example, $101 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$
 - More generally, in base 2:

Practice with Decimal and Binary

Write in Decimal

1. 1
2. 10
3. 100
4. 1011
5. 1100
6. 10101

Write in Binary

1. 3
2. 8
3. 10
4. 22
5. 37
6. 47
direct proof: example

claim: If a number is odd, then its binary representation ends with a 1.

proof:
- Let k be an arbitrary odd integer.
- Then there exists an integer r such that $k = 2r + 1$.
- Now let $d_n \ldots d_2 d_1 d_0$ be the binary representation of r.
- The binary representation of $2r$ is then $d_n \ldots d_2 d_1 d_0 0$, and
- The binary representation of $k = 2r + 1 = d_n \ldots d_2 d_1 d_0 1$.

conclusion: Therefore the binary representation of any odd integer ends with a 1.
proof techniques

- direct proof:
 - start with known facts. repeatedly infer additional new facts until can conclude what you want to show.
 - may divide work into cases

- proof of the contrapositive:
 - if trying to prove an implication, prove the contrapositive instead

- proof by contradiction
 - if trying to prove a statement, assume the statement is not true and prove something that is clearly false. From this conclude that the original statement must be true.
proof of the contrapositive: example

claim: If a number is odd, then its binary representation ends with a 1.

proof: The claim states that if an integer k is odd, then its binary representation ends with a 1. We prove the contrapositive: if the binary representation of a number k ends with a 0 then k is even.

Let k be an integer whose binary representation ends with a 0. Let $d_n...d_3d_2d_10$ be the binary representation of k. Since the digits in a binary number represent powers of 2, this means

$$k = d_n \cdot 2^n + d_{n-1} \cdot 2^{n-1} + \ldots + d_2 \cdot 2^2 + d_1 \cdot 2^1 + 0 \cdot 2^0$$

Therefore k is even.

We have proven the contrapositive and, therefore, the binary representation of any odd integer ends with a 1.
prove the following claim by proving each direction separately. Use a direct proof in one direction and a proof of the contrapositive in the other.

claim: let n be any integer. Then n is even if and only if n^2 is even.