csci54 – discrete math & functional programming
more logic, introduction to proofs
last time

- propositional logic:
 - practice with logical equivalence

- introduction to predicate logic:
 - definition of a predicate
 - quantifiers: forall, exists
 - theorems in predicate logic
from last time

Exactly one of the following two propositions is a theorem. Which one?

(1) \[\forall x \in S : P(x) \vee Q(x) \iff [\forall x \in S : P(x)] \vee [\forall x \in S : Q(x)] \]

(2) \[\exists x \in S : P(x) \vee Q(x) \iff [\exists x \in S : P(x)] \vee [\exists x \in S : Q(x)] \]

(2) is the theorem.

Prove that your answer is correct.

What is a proof?

A convincing argument that something is true.
Solution. Claim (B) is a theorem. To prove it, we’ll show that the left-hand side implies the right-hand side, and vice versa. (That is, we’re proving \(p \iff q \) by proving both \(p \Rightarrow q \) and \(q \Rightarrow p \), which is a legitimate proof because \(p \iff q \equiv (p \Rightarrow q) \land (q \Rightarrow p) \).) Both proofs will use the technique of assuming the antecedent.

First, let’s prove that \(\exists x \in S : P(x) \lor Q(x) \) implies \(\exists x \in S : P(x) \lor \exists x \in S : Q(x) \):

Suppose that \(\exists x \in S : P(x) \lor Q(x) \) is true. Then there is some particular \(x^* \in S \) for which either \(P(x^*) \) or \(Q(x^*) \). But in either case, we’re done: if \(P(x^*) \) then \(\exists x \in S : P(x) \) because \(x^* \) satisfies the condition; if \(Q(x^*) \) then \(\exists x \in S : Q(x) \), again because \(x^* \) satisfies the condition.

Second, let’s prove that \(\exists x \in S : P(x) \lor \exists x \in S : Q(x) \) implies \(\exists x \in S : P(x) \lor Q(x) \):

Suppose that \(\exists x \in S : P(x) \lor \exists x \in S : Q(x) \) is true. Thus either there’s an \(x^* \in S \) such that \(P(x^*) \) or an \(x^* \in S \) such that \(Q(x^*) \). That \(x^* \) suffices to make the left-hand side of (B) true.
What makes something "a convincing argument"?
an integer k is **even** if and only if there exists an integer r such that $k = 2r$

an integer k is **odd** if and only if there exists an integer r such that $k = 2r + 1$

$k | m$ if and only if there exists an integer r such that $m = kr$.

This is equivalent to saying that "$m \mod k = 0$" or that "k evenly divides m".

an integer $k > 1$ is **prime** if the only positive integers that evenly divide k are 1 and k itself.

an integer $k > 1$ is **composite** if it is not prime.

an integer k is a **perfect square** if and only if there exists an integer r such that $k = r^2$
example 1

Consider the statement "for all positive integers n, $2n = n^2$"

Why isn't this true?
- Consider $n = 3$
- Why is this a valid justification?

How would you write this as a statement in predicate logic?

$$\forall n \in \mathbb{Z}^+ : 2n = n^2$$

Showing that this statement is not true is the same as showing that its negation is true.
negating quantifiers

The following are both theorems

\[\neg \left(\forall x \in S : P(x) \right) \iff \exists x \in S : \neg P(x) \]
\[\neg \left(\exists x \in S : P(x) \right) \iff \forall x \in S : \neg P(x) \]

practice: what is the negation of the following? simplify as much as possible.

\[\exists x \in S : P(x) \lor Q(x) \]
example 1 - revisited

Consider the statement "for all positive integers n, 2n = n^2."

How would you prove that this statement is false?

- Consider the following counterexample. If n=3, then 2n=6 and n^2=9.
- Since there exists a positive integer such that 2n =/= n^2, the original statement is false.
example 2

- Claim: let x be any integer. If x is a perfect square, then $4x$ is a perfect square.

- How could you write the claim as a statement in predicate logic?

- How would you prove the claim is true?

- Why is this justification valid?
assuming the antecedent, modus ponens

- assuming the antecedent.
 - to show "if a then b", only need to show that if a is true, then b is true.

- two tautologies that are used repeatedly in proofs through a chain of reasoning.

\[(p \Rightarrow q) \land p \Rightarrow q\] Modus Ponens

\[(p \Rightarrow q) \land \neg q \Rightarrow \neg p\] Modus Tollens
example 2 - revisited

- Claim: let x be any integer. If x is a perfect square, then $4x$ is a perfect square

- How would you prove the claim is true?
 - Assume x is a perfect square (assuming the antecedent)
 - Then there exists an integer r such that $x = r^2$ (definition of perfect square, modus ponens)
 - Then $4x = 4r^2 = (2r)^2$ (algebra)
 - Therefore $4x$ is a perfect square (definition of perfect square)
 - In conclusion, for any integer x, if x is a perfect square then $4x$ is a perfect square.
Nested quantifiers

Let A be an array of n integers with 1-based indexing. What is the following asserting?

$$\forall i \in \{1, 2, \ldots, n\} : [\exists j \in \{1, 2, \ldots, n\} : (i \neq j) \land (A[i] = A[j])]$$

How could you write the following using nested quantifiers?

Every program that was turned in failed at least one test case.
Nested quantifiers - questions

- What are the rules with nested quantifiers?
- Can you flip the order of nested quantifiers?
- What happens if you negate a nested quantifier?
Nested quantifiers – order sometimes matters

- Exactly one of the following is true. Which? Why?
 \[\exists y \in \mathbb{R} : \forall x \in \mathbb{R} : x < y \]
 \[\forall x \in \mathbb{R} : \exists y \in \mathbb{R} : x < y \]

- However, if two or two , can flip order. Following are both theorems.
 \[\forall x \in S : \forall y \in T : P(x, y) \iff \forall y \in T : \forall x \in S : P(x, y) \]
 \[\exists x \in S : \exists y \in T : P(x, y) \iff \exists y \in T : \exists x \in S : P(x, y) \]
Negating nested quantifiers

Consider the following statement:

$$\forall i \in \{1, 2, \ldots, n\} : [\exists j \in \{1, 2, \ldots, n\} : (i \neq j) \land (A[i] = A[j])]$$

Simplify the negation:

$$\neg \forall i \in \{1, 2, \ldots, n\} : [\exists j \in \{1, 2, \ldots, n\} : (i \neq j) \land (A[i] = A[j])$$