cscid4 — discrete math & functional programming
propositional logic




Simplify each of the following Haskell expressions:

a && not a
a || (not a && b)

(not a || b) && (not b || c) &&
(not ¢ || not a) && (not c || not b)
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On "True" and "False"
> logic is the study of valid reasoning

> The starting point:

A proposition is a statement that is either True or False.

> What are examples of propositions that are True? False?
Unknown?



On propositional logic

> the study of propositions: how to formulate, evaluate,
manipulate

> atomic proposition: a proposition that is conceptually
indivisible

> compound proposition: a proposition that is build up out of
conceptually simpler propositions
How?




Creating compound propositions

> We can create more complex pronositional statements using

logical connectives Precedence rules:
negation (not, —, ~) * negation binds most

. . tightl
conjunction (and, A) . thgen Zonjunction

disjunction (or, V) . then disjunction
implication (implies, =, -) * then implication

iImplication is right-
associative

> In particular, a well-formed propositional logic formula is
defined as:

¢ == TIF|(=9)[(p A d)|(¢V 0)|(¢ = ¢)




Evaluating compound propositional statements

> Convenient to use a truth table to display the relationships
between truth values of different propositions

> Truth table for negation: _P || P

T| F
Fo T

> For conjunction (and) and disjunction (or): T

¢ == TIF|(=0)|(¢ A P)|(0V 9)|(¢ = ¢)

P|la|PAqQ||pV
T T T
T F| F T
F|T| F T
F|F| F F
)




Implication

> What does it mean to say "p implies g"7

p qistrueif qistrue or p is false plallp=q
T |T T
T | F F
F T T
| F T

> What iIs the truth value of each of the following statements?
1+ 1=2impliesthat2 + 3 =5
1+1=2impliesthat2 +3 =6
1+ 1=3impliesthat2 +3 =5
1+ 1=3impliesthat2 +3 =6



A little more on implications

"p =>4
“if p, then q”
“p implies q”
“ponly if 9"
“q whenever p”
“q, If p"
“q is necessary for p”
“p Is sufficient for q”

> Bidirectional implication p <=> (¢
"p if and only if g", "p iff 9"
True only when p and g have same truth value: either both true or
both false.



Example

> "Since Sandra is wearing a soccer jersey, she must be a soccer
player."

> This compound proposition is composed of 2 atomic
propositions:
(1) = Sandra is wearing a soccer jersey
(2) = Sandra is a soccer player

> The compound proposition can written as:
(1)  (2)

inspired by:
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Passwords

> "A password is valid only if it is at least 8 characters long, is
not one that you have used previously, and contains at least 2
of the following: a number, a lowercase character, an
uppercase character.”

> This is a compound proposition that is composed of how many
atomic propositions?

> What are the 6 atomic propositions?

> How can you write the compound proposition in terms of the
atomic propositions?






categorizing well-formed formulas (wif)

> A formula in propositional logic is one of:
tautology (valid): if it evalutes to T in all cases
satisfiable: evaluates to T in some cases
contingency (falsifiable): evaluates to F in some cases
contradiction (unsatisfiable): evaluates to F in all cases

> Consider the following formula:
(pVva)=(-pA—q)

> Which of the following describes the formula: tautology,
satisfiable, contingency, contradiction? Why?



a collection of tautologies

(p=>q)/\p=>q Modus Ponens (PVQ)/\_'P=>Q

(p = q) N—q = —p Modus Tollens =g N(Pp=>q)=¢q

pV —p Law of the Excluded Middle r=adra=n=E=0

p <& —p Double Negation =g ANp=>r)ep=>qgAr

p=p p=qVp=>rp=>qVr
pA(gVr)e (PAq V(AT

p=pVgq

p=(@=>rESpAg=r
PANq=Dp




logical equivalence

> Two propositions are logically equivalent ( written ) if they
have exactly identical truth tables (i.e. their truth values are
the same under every truth assignment)

Simplify each of the following Haskell expressions:

(a) a && not a
(b) a || (not a && b)
(c) (not a || b) && (not b || ¢) &&

(not ¢ || not a) && (not c || not b)



some logically equivalent propositions

Commutativity pVqg =4qVp Distribution of A over V pAN(gVr) = (pAq V(pAT)
PAqg = qAp Distribution of V over A pVgAr) = pVg A(pVr)
RiAG = 0P Contrapositive p=>qg = qg= —p
P=qg =4qg<=p
Associativity pV (gVvr) = (pVgq)V P=4="PV4q
PAGAN = (bAQ) AT P ST
PO (gOr) = (p@g) @ pria=rom
pegern =peq sr Mutual Implication (p = g) A (g =p) = p ¢
Idempotence pvVp =p De Morgan’s Laws “(pANg) = pV g
pPAp =p —~(pVg) = PA—q

(—raVb)A(=bVc)A(—cV —a)A(—cV —bd)
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