Option type

Look at option.sml

- option type has two constructors:
 - NONE (representing no value)
 - SOME v (representing the value v)
Public key encryption

![Diagram of public key encryption process]

1. Choose a bit-length k
2. Choose two primes p and q which can be represented with at most k bits
3. Let $n = pq$ and $\phi(n) = (p-1)(q-1)$
4. Find d such that $0 < d < n$ and $\text{gcd}(d,\phi(n)) = 1$
5. Find e such that $de \mod \phi(n) = 1$
6. private key = (d,n) and public key = (e,n)
7. encrypt(m) = $m^e \mod n$ decrypt(z) = $z^d \mod n$

RSA public key encryption

Cracking RSA

1. Choose a bit-length k
2. Choose two primes p and q which can be represented with at most k bits
3. Let $n = pq$ and $\phi(n) = (p-1)(q-1)$
4. Find d such that $0 < d < n$ and $\text{gcd}(d,\phi(n)) = 1$
5. Find e such that $de \mod \phi(n) = 1$
6. private key = (d,n) and public key = (e,n)
7. encrypt(m) = $m^e \mod n$ decrypt(z) = $z^d \mod n$

Say I maliciously intercept an encrypted message. How could I decrypt it? (Note, you can also assume that we have the public key (e,n).)

Cracking RSA

1. Choose a bit-length k
2. Choose two primes p and q which can be represented with at most k bits
3. Let $n = pq$ and $\phi(n) = (p-1)(q-1)$
4. Find d such that $0 < d < n$ and $\text{gcd}(d,\phi(n)) = 1$
5. Find e such that $de \mod \phi(n) = 1$
6. private key = (d,n) and public key = (e,n)
7. encrypt(m) = $m^e \mod n$ decrypt(z) = $z^d \mod n$

Cracking RSA

1. Choose a bit-length k
2. Choose two primes p and q which can be represented with at most k bits
3. Let $n = pq$ and $\phi(n) = (p-1)(q-1)$
4. Find d such that $0 < d < n$ and $\text{gcd}(d,\phi(n)) = 1$
5. Find e such that $de \mod \phi(n) = 1$
6. private key = (d,n) and public key = (e,n)
7. encrypt(m) = $m^e \mod n$ decrypt(z) = $z^d \mod n$

Say I maliciously intercept an encrypted message. How could I decrypt it? (Note, you can also assume that we have the public key (e,n).)

Cracking RSA

1. Choose a bit-length k
2. Choose two primes p and q which can be represented with at most k bits
3. Let $n = pq$ and $\phi(n) = (p-1)(q-1)$
4. Find d such that $0 < d < n$ and $\text{gcd}(d,\phi(n)) = 1$
5. Find e such that $de \mod \phi(n) = 1$
6. private key = (d,n) and public key = (e,n)
7. encrypt(m) = $m^e \mod n$ decrypt(z) = $z^d \mod n$

Say I maliciously intercept an encrypted message. How could I decrypt it? (Note, you can also assume that we have the public key (e,n).)
Cracking RSA

encrypt(m) = m^e mod n

Idea 1: undo the mod operation, i.e. mod^{-1} function

If we knew m^e and e, we could figure out m

Generally, no, if we don’t know anything about the message.

The challenge is that the mod operator maps many, many numbers to a single value.

Security of RSA

- **p:** prime number
- **q:** prime number
- **n = pq**
- **ϕ(n) = (p-1)(q-1)**
- **d:** 0 < d < n and gcd(d,ϕ(n)) = 1
- **e:** de mod ϕ(n) = 1

private key (d, n) **public key** (e, n)

Assuming you can’t break the encryption itself (i.e. you cannot decrypt an encrypted message without the private key).

How else might you try and figure out the encrypted message?

Security of RSA

- **p:** prime number
- **q:** prime number
- **n = pq**
- **ϕ(n) = (p-1)(q-1)**
- **d:** 0 < d < n and gcd(d,ϕ(n)) = 1
- **e:** de mod ϕ(n) = 1

private key (d, n) **public key** (e, n)

Already know e and n.

If we could figure out p and q, then we could figure out the rest (i.e. d)!

Security of RSA

- **p:** prime number
- **q:** prime number
- **n = pq**
- **ϕ(n) = (p-1)(q-1)**
- **d:** 0 < d < n and gcd(d,ϕ(n)) = 1
- **e:** de mod ϕ(n) = 1

private key (d, n) **public key** (e, n)

Already know e and n.

If we could figure out p and q, then we could figure out the rest (i.e. d)!
Security of RSA

<table>
<thead>
<tr>
<th>p: prime number</th>
<th>(\phi(n) = (p-1)(q-1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>q: prime number</td>
<td>(n = pq)</td>
</tr>
<tr>
<td>n = pq</td>
<td></td>
</tr>
</tbody>
</table>

Private key: \((d, n)\)
Public key: \((e, n)\)

How would you do figure out \(p \) and \(q \)?

For every prime \(p \) (2, 3, 5, 7, ...):
- If \(n \) mod \(p = 0 \) then \(q = n / p \)

Since \(p \) and \(q \) are both prime, there are no other numbers that divide them evenly, therefore no other numbers divide \(n \) evenly.

Why do we know that this must be \(p \) and \(q \)?

<table>
<thead>
<tr>
<th>p: prime number</th>
<th>(\phi(n) = (p-1)(q-1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>q: prime number</td>
<td>(n = pq)</td>
</tr>
<tr>
<td>n = pq</td>
<td></td>
</tr>
</tbody>
</table>

Private key: \((d, n)\)
Public key: \((e, n)\)

How long does this take?
- I.e., how many \(p \) do we need to check in the worst case assuming \(n \) has \(k \) bits?
For every number p (2, 3, 4, 5, 6, 7 …):
- If $n \mod p = 0$ then $q = n \div p$
- p is at most k bits
- With k bits we can represent numbers up to 2^k.
- If we assumed that p was picked randomly from these numbers, then on average we’d have to check 2^{k-1} numbers (half of them).
- For large k (e.g. 1024) this is a very big number!

Currently, there are no known “efficient” methods for factoring a number into its primes. This is the key to why RSA works!
Finding primes

2. Choose two primes p and q which can be represented with at most k bits

 Idea: pick a random number and see if it’s prime

 How do we check if a number is prime?

isPrime(num):
 for $i = 2 \ldots \sqrt{\text{num}}$:
 if $\text{num} \% i == 0$:
 return false
 return true

If the number is k bits, how many numbers (worst case) might we need to examine?

Finding primes

2. Choose two primes p and q which can be represented with at most k bits

 Idea: pick a random number and see if it’s prime

Primality test for num:
- pick a random number a
- perform test(num, a)
 - if test fails, num is not prime
 - if test passes, 50% chance that num is prime

Does this help us?
Finding primes

Primality test for `num`:
- pick a random number `a`
- perform `test(num, a)`
 - if test fails: return false
 - if test passes: return true

If `num` is not prime, what is the probability (chance) that we incorrectly say `num` is a prime?

0.5 (50%)

Can we do any better?

Finding primes

Primality test for `num`:
- Repeat 2 times:
 - pick a random number `a`
 - perform `test(num, a)`
 - if test fails: return false
 - if test passes: return true
- return true

If `num` is not prime, what is the probability that we incorrectly say `num` is a prime?

p(0.25)

• Half the time we catch it on the first test
• Of the remaining half, again, half (i.e. a quarter total) we catch it on the second test
• ¼ we don’t catch it
Finding primes

Primality test for `num`:
- Repeat 3 times:
 - pick a random number `a`
 - perform `test(num, a)`
 - if test fails: return false
- return true

If `num` is not prime, what is the probability that we incorrectly say `num` is a prime?

Primality test for `num`:
- Repeat 3 times:
 - pick a random number `a`
 - perform `test(num, a)`
 - if test fails: return false
- return true

`p(1/8)`

Finding primes

Primality test for `num`:
- Repeat `m` times:
 - pick a random number `a`
 - perform `test(num, a)`
 - if test fails: return false
- return true

If `num` is not prime, what is the probability that we incorrectly say `num` is a prime?

Primality test for `num`:
- Repeat `m` times:
 - pick a random number `a`
 - perform `test(num, a)`
 - if test fails: return false
- return true

`p(1/2^m)`

For example, `m = 20`: `p(1/2^{20}) = p(1/1,000,000)`
Finding primes

Primality test for \(n \):
- Repeat \(m \) times:
 - pick a random number \(a \)
 - perform test\((n, a)\)
 - if test fails return false
- return true

Fermat's little theorem: If \(p \) is a prime number, then for all integers \(a \):
\[
a^p \equiv a \pmod{p}
\]
How does this help us?

Implementing RSA

1. Choose a bit-length \(k \)
2. Choose two primes \(p \) and \(q \) which can be represented with at most \(k \) bits
3. Let \(n = pq \) and \(\phi(n) = (p-1)(q-1) \)

How do we do this?

Finding primes

Fermat's little theorem: If \(p \) is a prime number, then for all integers \(a \):
\[
a^p \equiv a \pmod{p}
\]

test\((n, a)\):
- generate a random number \(a < p \)
- check if \(a^p \mod p = a \)

Implementing RSA

1. Find \(d \) such that \(0 < d < n \) and \(\gcd(d, \phi(n)) = 1 \)
2. Find \(e \) such that \(de \mod \phi(n) = 1 \)

How do we do these steps?
Greatest Common Divisor

A useful property:

If two numbers are relatively prime (i.e. \(\text{gcd}(a,b) = 1 \)), then there exists a \(c \) such that

\[a^c \mod b = 1 \]

Greatest Common Divisor

A more useful property:

two numbers are relatively prime (i.e. \(\text{gcd}(a,b) = 1 \))

\[\text{iff} \] there exists a \(c \) such that \(a^c \mod b = 1 \)

What does \(\text{iff} \) mean?

Implementing RSA

1. Find \(d \) such that \(0 < d < n \) and \(\text{gcd}(d,\phi(n)) = 1 \)

2. Find \(e \) such that \(de \mod \phi(n) = 1 \)

If there exists \(a \) \(c \) such that \(a^c \mod b = 1 \), then the two numbers are relatively prime (i.e. \(\text{gcd}(a,b) = 1 \))

To find \(d \) and \(e \):
- pick a random \(d \), \(0 < d < n \)
- try and find an \(e \) such that \(de \mod \phi(n) = 1 \)
 - if none exists, try another \(d \)
 - if one exists, we're done!

We're going to leverage this second part
For the assignment, I've provided you with a function: inversemod

Known problem with known solutions

If a message is encrypted with the private key how can it be decrypted?

Hint:
- \((m^e)^d = m^{ed} = m \pmod{n}\)
- encrypt\((m, (e, n)) = m^e \pmod{n}\)
- decrypt\((z, (d, n)) = z^d \pmod{n}\)

encrypt\((m, (d,n)) = m^d \pmod{n}\)

decrypt\((m^d \pmod{n} , (e, n)) = (m^e)^d \pmod{n} = m^{ed} \pmod{n} = m^{ed} \pmod{n} = m \pmod{n} \quad \text{(if } m < n)\)

What does this do for us?
Signing documents

If the message can be decrypted with the public key then the sender must have had the private key.

This is a way to digitally sign a document!

Confirmed: batman likes bananas

Public key encryption

How does this happen?

Anything we have to be careful of?