

1

3

Admin

Midterm 1

Practice problems posted
Very light coverage of numbers with different bases (I wouldn't put Q7 on the midterm)

Assignment 2 grading

Assignment 3

Assignment 4

2

4

5

7

Computer internals simplified

6

Computer internals simplified

8

9

11

10

12

13

15

14

16

17

19

18

Memory in the CS52 Machine

20

21

23

22

25

27

26

28

	add r1 r2 r3
	What does this do?
$\begin{aligned} & 1^{\text {st }} R: \\ & 2^{\text {nd }} R: \\ & 3^{\text {rd }} S / R: \end{aligned}$	register where the answer will go register of first operand register/value of second operand

29

add r2 r1 10	
	What does this do?
$1{ }^{\text {st }} \mathrm{R}$:	register where the answer will go
$2^{\text {nd }} \mathrm{R}$:	register of first operand
$3{ }^{\text {rd }} \mathrm{S} / \mathrm{R}$:	register/value of second operand

31

30

32

33

Accessing memory
$\left.\begin{array}{l}\text { sto } \\ \text { loa }\end{array}\right\}$ RRS
sto $=$ save data in register TO memory loa $=$ put data FROM memory into a register
sto r 1 r 2 ; store the contents of r 1 to mem[r2] loa r 1 r 2 ; get data from mem[r2] and put into r 1

35

	$\begin{aligned} & \text { add r1 r0 } 8 \\ & \text { neg r2 r1 } \\ & \text { sub r2 r1 r2 } \end{aligned}$	$\begin{aligned} r 1 & =8 \\ r 2 & =-8, r 1=8 \\ r 2 & =16 \end{aligned}$
$\begin{aligned} & 1^{\text {st }} R: \\ & 2^{\text {nd }} R: \\ & 3^{\text {rd }} S / R: \end{aligned}$	register where register of firs register/value	answer will go rand cond operand

34

Accessing memory
$\left.\begin{array}{rl}\text { sto } \\ \text { loa }\end{array}\right\}$ RRS
sto $=$ save data in register TO memory loa $=$ put data FROM memory into a register Special cases: - saving TO (sto) address 0 prints - reading from (loa) address 0 gets input from user

36

37

39

38

40

$1^{\text {st }} R:$	first register for comparison
$2^{\text {nd }} R:$	second register in comparison
$3^{\text {rd }} B:$	label

41

ble r2 r3 done

What does this do?
$1^{\text {st }} \mathrm{R}$: first register for comparison
$2^{\text {nd }} R$: \quad second register in comparison
$3^{\text {rd }} \mathrm{B}$:
label

44

45

Basic structure of CS52 program

```
; great comments at the top
```

;

Basic structure of CS52 program	
; great comments at the top!	
;	
instruction1	; comment
instruction2	; comment
label1	
instruction	; comment
instruction	; comment
label2	
hlt	
end	
\checkmark	
- whitespace before operations/instructions	
- labels go here	

label1
; comment
instruction ; comment
label2
hlt
end
\square

- whitespace before operations/instructions
labels go here
47

CS52 machine execution

A program is simply a sequence of instructions stored in a block of contiguous words in the machine's memory. In executing a program, the CS52 Machine follows a simple loop:

- The machine fetches the value at mem[ic] for use as an instruction
- The machine increments the value in ic by 2
- The machine decodes and carries out the instruction.

CS5 2 machine execution
A program is simply a sequence of instructions stored in a block of contiguous
words in the machine's memory. In executing a program, the Cs52 Machine follows
a simple loop:
- The machine fetches the value at mem[ic] for use as an instruction.
- The machine increment the value in ic by 2 .
The machine decodes and carries out the instruction.

46

More CS52 examples
Look at max_simple.a52
Get two values from the user
Compare them
Use a branch to distinguish between the two cases
Goal is to get largest value in r 3
print largest value

48

