

1

3

Admin

Assignment 5

Assignment 6

\qquad

\qquad
2

7
Encryption: the basic idea

8

9

11

12

13

15

14

Public key encryption

Two keys, one you make publicly available and one you keep to yourself

16

17

19

18

20

21

23

Modular arithmetic	
Which of these statements are true?	
$12 \equiv 5(\bmod 7)$	$\begin{aligned} & 12-5=7=1 * 7 \\ & 12 \% 7=5=5 \% 7 \end{aligned}$
$52 \equiv 92(\bmod 10)$	$\begin{aligned} & 92-52=40=4 * 10 \\ & 92 \% 10=2=52 \% 20 \end{aligned}$
$17 \equiv 12(\bmod 6)$	$\begin{aligned} & 17-12=5 \\ & 17 \% 6=5 \\ & 12 \% 6=0 \end{aligned}$
$65 \equiv 33(\bmod 32)$	$\begin{aligned} & 65-33=32=1 * 32 \\ & 65 \% 32=1=33 \% 32 \end{aligned}$

22

Modular arithmetic properties

If:
$\mathrm{a} \equiv \mathrm{b}(\bmod n)$
then:
$a \bmod n=b \bmod n$
More importantly:
$(a+b) \bmod n=((a \bmod n)+(b \bmod n)) \bmod n$ and
$(a * b) \bmod n=((a \bmod n) *(b \bmod n)) \bmod n$
What do these say?
24

25

26

27

Modular arithmetic examples
$\left(1712^{*} 1637\right) \bmod 10=$

The easy way: $1712 \bmod 10 * 1637 \bmod 10=$
$(2 * 7) \bmod 10=4$
$1712 * 1637=2802544 \bmod 10=4$

Modular arithmetic

Why talk about modular arithmetic and congruence? How is it useful? Why might it be better than normal arithmetic?

We can limit the size of the numbers we're dealing with to be at most n (if it gets larger than n at any point, we can always just take the result mod n)

The mod operator can be thought of as mapping a number in the range $0 \ldots \mathrm{n}-1$

29

Modular arithmetic examples
$\left(1712^{237}\right) \bmod 10=$
The hard way:
2189733188915527033845242014775024662365379214649108861079776729377311646 4178863410200431314724639065631582340030916000535491050743393313989255160 6348256002908856782720027938471702516151831261883438208185382676856143035 8555422262025688935645992713224910081777580598384256361226430744486783684 8972183344917544635567789574283214685603416614354211724441199147585377319 5095208186453962543366582014601745790932081507762017670719732913228 5095208486453956254338665468200146017457909832081507762047670719732913228 2750630252268175042103727092839763924653863693246547423290880175403121554 3907099468990249536971584503074405804732055649986685982347798454659692375 $3074051810350864290528921125484756992 \bmod 10$

2

31

Modular arithmetic examples

$\left(1712^{237}\right) \bmod 10=$

30

Modular arithmetic examples

$\left(1712^{237}\right) \bmod 10=$ The easy way:
$\left((1712 \bmod 10)^{237}\right) \bmod 10=$

$$
\left(2^{237}\right) \bmod 10=
$$

2208558830972980411979121875928648
1447843548710945236976520077516157
7472
$\bmod 10=2$

33

Greatest Common Divisor

$\operatorname{gcd}(a, b)$ is the largest positive integer that divides both numbers without a remainder

$$
\operatorname{gcd}(25,15)=?
$$

35

34

36

Greatest Common Divisor

$\operatorname{gcd}(a, b)$ is the largest positive integer that divides both numbers without a remainder

$$
\operatorname{gcd}(100,52)=?
$$

37

Greatest Common Divisor

$\operatorname{gcd}(a, b)$ is the largest positive integer that divides both numbers without a remainder

$$
\begin{gathered}
\operatorname{gcd}(14,63)=? \quad \operatorname{gcd}(7,56)=? \\
\operatorname{gcd}(23,5)=? \\
\operatorname{gcd}(111,17)=?
\end{gathered}
$$

Greatest Common Divisor

$\operatorname{gcd}(a, b)$ is the largest positive integer that divides both numbers without a remainder

$$
\operatorname{gcd}(100,52)=4
$$

Divisors:	100	52
	100 50	52
	50 20 20	13
	20 10	4 2
	${ }_{4}^{5}$	1
	${ }_{1}^{2}$	

38

40

41

RSA public key encryption

Have you heard of it?

What does it stand for?

43

Greatest Common Divisor

A useful property:

If two numbers, a and b, are relatively prime (i.e. $\operatorname{gcd}(a, b)=1)$, then there exists $a c$ such that

$$
a^{*} c \bmod b=1
$$

42

RSA public key encryption

RSA is one of the most popular public key encryption algorithms in use

RSA $=$ Ron Rivest, Adi Shamir and Leonard Adleman
\qquad

\square
44

RSA public key encryption

Choose a bit-length k

Security increases with the value of k, though so does computation
2. Choose two primes p and q which can be represented with at most k bits
3. Let $n=p q$ and $\phi(n)=(p-1)(q-1)$
$\varphi()$ is called Euler's totient function

Find d such that $0<\mathrm{d}<\mathrm{n}$ and $\operatorname{gcd}(\mathrm{d}, \phi(\mathrm{n}))=1$

Find e such that $d e \bmod \phi(n)=1$
Remember, we know one exists!

45

| RSA publickey encryption |
| :--- | :--- |
| p: prime number $\phi(n)=(p-1)(q-1)$
 $q:$ prime number $d: 0<d<n$ and $\operatorname{gcd}(d, \phi(n))=1$
 $n=p q$ e: de $\bmod \phi(n)=1$ |

Given this setup, you can prove that given a number m :
m message

What does this do for us, though?

47

RSA public key encryption

$$
\begin{array}{ll}
\mathrm{p}: \text { prime number } & \phi(n)=(p-1)(q-1) \\
\mathrm{q}: \text { prime number } & \mathrm{d}: 0<d<\mathrm{n} \text { and } \operatorname{gcd}(d, \phi(n))=1 \\
\mathrm{n}=\mathrm{pq} & \text { e: de } \bmod \phi(n)=1
\end{array}
$$

Given this setup, you can prove that given a number m :

$$
\left(m^{e}\right)^{d}=m^{e d}=m(\bmod n)
$$

What does this do for us, though?

46

| RSA public key encryption |
| :--- | :--- |
| p: prime number $\phi(n)=(p-1)(q-1)$
 q: prime number d: $0<d<n$ and $\operatorname{gcd}(d, \phi(n))=1$
 $n=p q$ e: de $\bmod \phi(n)=1$ |

Given this setup, you can prove that given a number m :
$\left(m^{e}\right)$ encrypted message

What does this do for us, though?

48

49

51

RSA public key encryption

$p:$ prime number $\quad \phi(n)=(p-1)(q-1)$
$q:$ prime number $\quad d: 0<d<n$ and $\operatorname{gcd}(d, \phi(n))=1$
$\mathrm{n}=\mathrm{pq}$
e: $d e \bmod \phi(n)=1$

(d, n)

$$
(e, n)
$$

50

RSA encryption/decryption	
private key	public key
(d, n)	(e, n)
You have a number m that you want to send encrypted	
encrypt $(\mathrm{m})=\mathrm{m}^{\text {e }} \bmod \mathrm{n} \quad$ (uses the public key)	
- Maps m onto some number in the range 0 to $n-1$ - If you vary e, it will map to a different number - Therefore, unless you know d, it's hard to know what the original m was after the transformation	

52

53

55

54

| RSA encryption: an example |
| :--- | :--- |
| $p:$ prime number $\phi(n)=(p-1)(q-1)$
 $q: p r i m e ~ n u m b e r ~$ $d: 0<d<n$ and $\operatorname{gcd}(d, \phi(n))=1$
 $n=p q$ e: de $\bmod \phi(n)=1$ |
| $p=3$
 $q=13$
 $n=?$
 $\phi(n)=?$
 $d=?$
 $e=?$ |

56

57

RSA encryption: an example

$\begin{aligned} & \mathrm{p} \text { : prime number } \\ & \mathrm{q}: \text { prime number } \\ & \mathrm{n}=\mathrm{pq} \end{aligned}$	$\begin{aligned} & \phi(n)=(p-1)(q-1) \\ & d: \quad 0<d<n \text { and } \operatorname{gcd}(d, \phi(n))=1 \\ & e: \quad \text { de } \bmod \phi(n)=1 \end{aligned}$
$\begin{aligned} & p=3 \\ & q=13 \\ & n=39 \\ & \phi(n)=? \end{aligned}$	

59

RSA encryption: an example

$\mathrm{p}:$ prime number	$\phi(n)=(p-1)(q-1)$
$\mathrm{q}:$ prime number	$\mathrm{d}: 0<\mathrm{d}<\mathrm{n}$ and $\operatorname{gcd}(d, \phi(n))=1$
$\mathrm{n}=\mathrm{pq}$	e: de $\bmod \phi(n)=1$

$p=3$
$q=13$
$\mathrm{n}=3^{*} 13=39$

58

RSA encryption: an example	
p : prime number q : prime number $\mathrm{n}=\mathrm{pq}$	$\begin{aligned} & \phi(n)=(p-1)(q-1) \\ & d: \quad 0<d<n \text { and } \operatorname{gcd}(d, \phi(n))=1 \\ & e: \quad \text { de } \bmod \phi(n)=1 \end{aligned}$
$\begin{aligned} & p=3 \\ & q=13 \\ & n=39 \\ & \phi(n)=2 * 12=24 \end{aligned}$	

60

| RSA encryption: an example |
| :--- | :--- |
| $p:$ prime number $\phi(n)=(p-1)(q-1)$
 $q:$ prime number $d: 0<d<n$ and $\operatorname{gcd}(d, \phi(n))=1$
 $n=p q$ e: d emod $\phi(n)=1$ |
| $p=3$
 $q=13$
 $n=39$
 $\phi(n)=24$
 $d=?$
 $e=?$ |

61

| RSA encryption: an example |
| :--- | :--- |
| p: prime number
 q: prime number $d: n)=(p-1)(q-1)$
 $n=p q$ e: $0<d<n$ and $\operatorname{gcd}(d, \phi(n))=1$
 $n=3$
 $p=3$
 $q=13$
 $n=39$
 $\phi(n)=24$
 $d=5$
 $e=5$ |

62

| RSA encryption: an example |
| :--- | :--- |
| $p:$ prime number $\phi(n)=(p-1)(q-1)$
 $q:$ prime number $d: 0<d<n$ and $\operatorname{gcd}(d, \phi(n))=1$
 $n=p q$ e: de $\bmod \phi(n)=1$ |
| $p=3$
 $q=13$
 $n=39$
 $\phi(n)=24$
 $d=5$
 $e=29$ |

63

RSA encryption: an example

$$
\begin{array}{ll}
n=39 & \text { encrypt }(m)=m^{e} \bmod n \\
d=5 & \text { decrypt }(z)=z^{d} \bmod n \\
e=29 &
\end{array}
$$

encrypt(10) = ?

64

65

67

RSA encryption: an example
$\mathrm{n}=39$
encrypt $(m)=m^{e} \bmod n$
$d=5$
$e=29$
decrypt(z) $=z^{d} \bmod n$
encrypt $(10)=10^{29} \bmod 39=4$
decrypt(4) $=$?

66

RSA encryption: an example

$$
\begin{array}{ll}
n=39 & \text { encrypt }(m)=m^{e} \bmod n \\
d=5 & \text { decrypt }(z)=z^{d} \bmod n \\
e=5 &
\end{array}
$$

encrypt(2) $=$?

68

RSA encryption: an example

$$
\begin{array}{ll}
\mathrm{n}=39 & \text { encrypt }(\mathrm{m})=m^{e} \bmod n \\
\mathrm{~d}=5 & \operatorname{decrypt}(z)=z^{d} \bmod n \\
e=5 &
\end{array}
$$

encrypt $(2)=2^{5} \bmod 39=32 \bmod 39=32$
decrypt(32) $=$?

69

RSA encryption in practice

For RSA to work: $0 \leq \mathrm{m}<\mathrm{n}$

What if our message isn't a number?
What if our message is a number that's larger than n ?

71

RSA encryption: an example

$$
\begin{array}{ll}
\mathrm{n}=39 & \text { encrypt }(\mathrm{m})=m^{e} \bmod n \\
\mathrm{~d}=5 & \text { decrypt }(\mathrm{z})=z^{d} \bmod n \\
\mathrm{e}=5 &
\end{array}
$$

$$
\text { encrypt }(2)=2^{5} \bmod 39=32 \bmod 39=32
$$

$$
\text { decrypt }(32)=32^{5} \bmod 39=2
$$

70

RSA encryption in practice

For RSA to work: $0 \leq \mathrm{m}<\mathrm{n}$

What if our message isn't a number?
We can always convert the message into a number (remember everything is stored in binary already somewhere!)

What if our message is a number that's larger than n ? Break it into n sized chunks and encrypt/decrypt those chunks

72

73

RSA encryption in practice
$\operatorname{decrypt}((17,1,43,15,12, \ldots))=$ $4,15,6,2,22, \ldots$ decrypt each number $0101100101011100 \ldots$ put back together
"I like bananas"
Often encrypt and decrypt just assume sequences of bits and the interpretation is done outside

74

