
CS54 - Midterm 1 Practice Problems

These examples are intended to give you an idea of the kind of questions on the midterm. They
may be a little easier, a little harder, or a little less clear than actual midterm problems. As you
read them, emphasize “mastering the concept” over “getting the answer.” Sample solutions follow
the examples. Work the problems and think them through completely before reading the solutions.

1. Write a function to compute the sum of the squares of elements in the list?

2. The function zip was on an assignment. Write the corresponding function unzip.

3. True or False: The function below has the type signature: (int * int) list -> int

list:

fun mystery lst = map (op /) lst;

4. Determine the type signatures of the functions e, f, and g.

fun f x [] 0 = x

| f x [] z = e z

| f x (y::ys) z =

if x then

f x (y::ys) (z-1)

else

f x ys z;

fun g u v = v u;

5. Given the following function:

fun check _ [] = []

| check b (x::xs) = if b then

x :: (check (not b) xs)

else

check (not b) xs;

What would be returned if we call it with:

1



check true ["I", "really", "love", "coding", "SML"];

6. Write a function called check2 that is equivalent to check true (note, that since check is
curried, this is a function), but that does not use booleans.

2



Solutions

1. fun squareSum [] = 0

| squareSum (x::xs) = x*x + (squareSum xs);

2. There are many ways to write the function. This one is contorted to avoid a let construction
and a named helper function. (FYI, there is a built-in function ListPair.unzip.)

fun unzip [] = ([], [])

| unzip ((u,v)::uvs) =

let

val (x,y) = unzip uvs;

in

(u::x,v::y)

end;

(* or *)

fun unzip [] = ([], [])

| unzip ((u,v)::uvs) = (fn (x,y) => (u::x,v::y)) (unzip uvs);

3. False. Remember, that / is for reals!

4. e : int -> bool

f : bool -> ’a list -> int -> bool

g : ’a -> (’a -> ’b) -> ’b

5. ["I","love","SML"]

6. fun check2 [] = []

| check2 [x] = [x]

| check2 (x::y::xs) = x::(check2 xs);

3


