
Computer Science 52

A Brief Introduction to SML

Spring Semester, 2017

Contents

Introduction 1

Part I Using the SML System 4

1 Obtaining an Account . 4

2 Your First Session . 4

3 Subsequent Sessions . 5

4 SML Messages . 9

Part II The SML Language 12

1 Data Types . 12

2 Constructing New Types . 14

3 Expressions and Values . 16

4 Information Hiding . 18

5 More on Functions . 19

6 The Basis Library . 20

7 Exceptions and Options . 20

8 More on Patterns . 23

9 More on Expressions . 24

Part III An SML Style Guide 27

1 Absolutes . 27

2 General Points . 27

3 Comments . 28

Copyright © 2017 Everett L. Bull, Jr.
All rights reserved

David Kauchak

David Kauchak

David Kauchak

David Kauchak
54

4 Names . 28

5 Indentation . 30

6 Parentheses . 31

7 Pattern Matching . 31

8 Verbosity and let Expressions . 32

9 Verbosity and Booleans . 33

Part IV Idioms and Examples 34

1 Getting Started . 34

2 Curried Functions . 36

3 Lists . 37

4 List Recursion . 38

5 The Three Rules of Recursion . 42

6 Numerical Recursion . 43

7 List Recursion Revisited . 47

8 An Aside: When Not to Use Recursion 50

9 Numerical Recursion Revisited: Division 51

10 Types . 53

11 Functional Programming and List Recursion 58

12 An Aside: E�ciency . 64

13 Adventures in Arithmetic: Bits . 67

14 Adventures in Arithmetic: Digits . 71

15 Adventures in Arithmetic: Long Division 73

16 Lazy Datatypes . 76

17 Mutual Recursion . 80

ii

Introduction

SML stands for “standard meta-language.” The language was originally designed
for writing programs to carry out logical deduction, but like other programming
languages based on carefully chosen principles, it found many other uses. SML
and its functional relatives are used for controlling telecommunications systems,
robots, and astronomical telescopes; for designing and validating circuits and low-
level software; and for sophisticated financial calculations. Google uses a patented
method called MapReduce, inspired by functional programming ideas, to distribute
huge computational tasks across thousands of computers. Microsoft has developed
a language called F# for its .NET framework that is closely related to SML. Your work
in this course will give you a sound foundation in fundamental principles that will
transfer to all these languages and paradigms.

We assume that you have previously studied Java. SML di↵ers from Java in several
important ways.

• It is a functional language. The basic mode of computation in SML is to apply
functions to arguments, yielding results to which other functions may be ap-
plied. Here, we are using the word “function” in the same way as you may have
seen it used in a mathematics course. One advantage of functional program-
ming is that it is easy to reason about programs; one can prove rigorously that
the functions behave as expected. Another advantage is that opportunities for
parallel computation are presented clearly and usefully.

• Data values in SML are immutable; once created, they cannot be changed. We
make progress in a calculation by applying functions that create new values.
In contrast, Java objects contain an internal state—the values of the instance
variables—which may change over the course of the computation. There are no
variables and no assignment statements in SML. (We do give names to values
for convenience, but once named a value does not change.) The lack of side
e↵ects in SML is what makes it possible to reason rigorously about programs.

• Like Java, SML is a strongly-typed language. It is impossible to mistake an
integer for another kind of object. Programs written in strongly-typed lan-
guages are less likely to have errors and are therefore more reliable. Unlike
Java in which one has to declare types, SML has a system of type inference
which deduces—and enforces—the types of the values. Some programmers
find the type restrictions annoying at first, but most people soon welcome the
discipline that strong typing brings.

• Functions in SML are first-class entities, right up there with integers and strings
and boolean values. This feature is jarring to Java programmers who have

1

learned to make a sharp distinction between variables and methods. In SML,
a function may be passed as an argument to another function, and the result
of a function application may be another function. The concept of functions
allows us to work at a higher level of abstraction, benefiting both programmer
productivity and program correctness.

• SML has a powerful system for defining abstract data types. Functions may be
polymorphic, meaning that they can take arguments of many di↵erent types.

• SML and its associated data structures support and encourage recursion. Re-
cursion is a fundamental concept in computer science, and recursive formula-
tions are often clearer and easier to understand. We will use recursion exten-
sively in our work in the course. One feature of SML is pattern matching that
allows us to create data types and functions in an easy and intuitive way.

We chose SML for this course partly because it encourages clear thinking about data
structures and computations and partly because it is new to you and is a useful
paradigm. Even if you never write a program in SML after this course, you will use
the concepts, ideas, and skills that you develop here.

Using This Document

Learning a programming language is complicated. You must learn the details of
the language’s syntax—where the semicolons go. You must learn the software that
implements the language. You must learn the fundamental concepts underlying the
language. And you must learn the idioms associated with writing programs in the
language. All of these aspects of a programming language are interrelated, and it is
not possible to learn one thing at a time.

This document is divided into four parts which reflect the di↵ering aspects of learn-
ing a language. It is unlikely that you will read any one part from start to finish.
Rather, you will move back and forth between the parts and make some progress
through each one in a single sitting.

Part I, Using the SML System introduces you to the software that you will use in
this course, shows you how to submit your assignments, and describes how to
interpret SML error messages.

Part II, The SML Language is an informal reference manual for the the language.

Part III, An SML Style Guide discusses how to present your code. It covers indent-
ing, capitalization conventions, commenting, and consistent style.

2

Part IV, Idioms and Examples presents the fundamental ideas underlying SML—
functions, recursion, and lists—and illustrates how they are expressed in the
language. There are many examples and practice problems. It is likely that
you will spend the largest portion of your time in this part, referring back to
the other sections as needed.

3

Part II

The SML Language

Many introductions to programming languages use a “bottom-up” approach. They
start with simple data types and language primitives and show you how to use them
to construct larger programs. That may not be the best approach to learning a new
language, but it helps to collect the basic facts about a language in one place. Here,
we present an informal reference manual for the parts of SML that are important in
the course.

1 Data Types

The type int The integer data type int has constants like 0 and 47. It has the
usual operations +, -, and * for addition, subtraction, and multiplication, respec-
tively. One unusual feature of SML is that it has a special operator for negation; the
symbol ~ is used as the unary minus sign. One writes ~47 instead of -47.

The integer division operations are div and mod. The former computes the inte-
ger quotient and discards any fractional part. The latter gives the remainder; it is
the analog of the % operator in Java. Be aware that SML, like most programming lan-
guages, implements integer division by rounding toward �1. For negative quotients,
that is di↵erent from the mathematically more natural notion of rounding toward
zero. In all cases, the remainder is computed so that the quotient and remainder
satisfy the expected identity.

v * (u div v) + (u mod v) = u

The arithmetic operators follow the usual rules of precedence. Unary minus is done
first, then multiplication and division, and finally addition and subtraction.

SML values of type int admit the usual comparison operators: =, <>, <, <=, >, and
>=. Notice that the “equals” operator is a single equals sign, and the “not equals”
operator is <>. These are operators in the strict sense of the word; each one takes
two integer arguments and returns a boolean value.

The type bool There are two values of type bool, false and true. There is a
unary operator, not, and two binary operators, andalso and orelse. The latter op-
erators employ “short-circuit evaluation,” just like their counterparts in Java. If the
operator’s value of can be determined from the first argument, the second argument
is not evaluated.

12

The order of precedence for boolean operations is that not is done first, then
andalso, and finally orelse.

Boolean values in SML are simply values of type bool. There is no cosmic signifi-
cance to the word true. Avoid expressions like b=true; the simpler expression b is
su�cient.

The type real Real numbers, called floating point numbers in computerspeak,
exist in SML, but they are distinct from the integers. Constant expressions must
have a digit to the right of the decimal point. Thus, 47 is of type int, while 47.0 is
of type real. Values of type real have the usual operators +, -, ~, *, and /. They
follow the usual rules of precedence, just as for integers.

The real division operator / applies only to values of type real; it is an error to o↵er
it arguments of type int. There are explicit functions real and round that convert
values between real and int.

Values of type real admit the inequality operators <, <=, >, and >=, but not = and
<>. The reason for the omission of the equality and inequality operators is that com-
putations of floating point numbers are inexact. Two values that are mathematically
identical may not be recognized as being equal by the operator =.

The type char Individual character constants are written in a strange way. The
lowercase version of the last letter of the alphabet is #"z". All the characters are
arranged in an ordered sequence. The exact arrangement is usually not important
to us, except for the facts that the digits 0 through 9 are adjacent to one another in
their usual order. Analogous facts hold for the uppercase letters and the lowercase
letters.

The six comparison operators will show the relation of the characters according
to the underlying character set. There is a function ord that maps characters to
their integer position in the character set, starting with zero. There is a function
chr which takes an integer and returns the character in that place in the character
ordering. The standard way to transform a digit into the corresponding int value is
to use an expression like this: ord(c) - ord(#"0").

The type string Strings are essentially sequences of characters and are used
more frequently than characters. String constants are written with double quota-
tion marks, as in "SML". The empty string is "".

The symbol ^ is used for the string concatenation operator. The six comparison
operators operate on strings using the usual lexicographic order inherited from the

13

underlying character set. There are functions explode and implode that convert a
string to a list of characters and vice versa.

2 Constructing New Types

The basic types may be used to create new, sometimes complicated, types. In this
section, we review the ways to specify list, tuple, and function types.

List types Lists in SML are recursive. A list is either empty or it has a first element.
The elements in a non-empty list after the first element form another list—the rest
of the list.

The empty list is denoted [] or nil. The list constructor :: takes an element and a
list and creates a new list with the given element as the first element. The list whose
only element is the integer zero is 0::nil.

There is a convenient notation using square brackets for lists. As we have seen, []
is the empty list. The list whose only element is zero can be written [0], which is
more convenient than 0::nil. The expression [0,1,2] denotes a three-element list
which might otherwise be written 0::1::2::nil.

Lists in SML are homogeneous, meaning that all the elements of a list must be of the
same type. The type for lists of integers is written int list. More generally, the
type ’a list consists of all the lists whose elements are of some (as yet unspecified)
type ’a.

The operator @ appends one list to another. Among the built-in list functions are
length, rev, and map. We shall see many more list functions in this course.

Tuples Lists in SML are homogeneous—all the elements must be of the same type—
and they have variable lengths. Tuples, on the other hand, can have components of
di↵erent types, but they have a fixed length. Tuples are constructed with parenthe-
ses.

The most common kind of tuple is the ordered pair. You encountered ordered pairs
when you studied analytic geometry. The pair (4.3, �2.4) represents the coordinates
of a point in the Euclidean plane. In SML, it would be written (4.3,~2.4) and is
of type real * real. The operator *, when used in type specifications, specifies
the Cartesian product of two types. The general specification ’a * ’b is the type
whose values are the ordered pairs in which the first component is of type ’a and
the second component is of type ’b.

14

When we write an expression like f(x,y), we are asserting that f is a function whose
single argument is an ordered pair. We will also have occasion to write functions
whose result is an ordered pair.

There are higher-order tuples as well. An example of a three-tuple is (47, false,
nil); its type is int * bool * ’a list.

There is no distinct type of one-tuples; we consider the values of a type to be the
1-tuples of that type. There is, however, a zero-tuple. It is written with parentheses,
(), and is the only value of the type unit. One example of the use of the unit type
is as the return value of the function use. That function takes one argument, a file
name, and returns (). In contrast to most other functions, we execute use for the
side e↵ect of reading a file into the SML system; we are not interested in the value
that use returns. We shall see similar uses of the unit type when we study lazy
structures.

Rarely, it is useful to have a function that extracts one component from a tuple.
The function #1 takes a tuple and returns the first component. Similarly, #5 would
return the fifth component, assuming that the tuple is large enough. Most of the
time it is cleaner to use pattern-matching to extract a component from a tuple.

A tuple is actually a special case of a more general type construction called a record.
We will not encounter records in this course.

Function types We have already mentioned that functions in SML are “first class
objects.” For example, the length function takes a list and returns an integer,
namely the number of elements in the list. As an entity, length is a function of
type ’a list -> int.

The function length is polymorphic, meaning that it applies to many di↵erent types.
In this case, the argument to length can be any kind of list. That is the reason for
the “placeholder type” ’a.

The operator -> specifies a function type. The operator -> associates to the right,
meaning that

’a -> ’b -> ’c is interpreted as ’a -> (’b -> ’c).

A function of that type takes a value of type ’a and returns a function from ’b to ’c.
In contrast, the signature (’a -> ’b) -> ’c specifies an entirely di↵erent type; it
takes a function from ’a to ’b and returns an element of type ’c.

15

3 Expressions and Values

The syntax of SML is simple and natural, and it emphasizes the underlying meaning
of the code. The fundamental syntactic entity is the expression, which specifies a
value.

Expressions An expression is composed of identifiers, constants, and operators.
Parentheses may be used for grouping. Each of the components of an expression has
a type, and the operators must be used in ways that are consistent with the types
of their operators. Later in the course, we will study a more precise way of specify-
ing the syntax of expressions. Here are some legal expressions; the corresponding
values are obvious.

50-3
(2+2)*10+(9-2)
round(141.0/2.0)
round(141.0) div 2
implode [chr 52, chr 55]

Each expression specifies a computation which produces a value. In a sense, that
value is the meaning of the expression. The value of an expression has an unambigu-
ous type. The notation for that type is the value’s type signature. Type signatures are
constructed from the basic types, like int and string, using the type constructors,
like * and list and ->. Here are some sample type signatures.

bool
int * bool
real * real -> int -> real
int list -> int

Conditional expressions A conditional expression is constructed from the key-
words if, then, and else. The structure is as follows.

if hboolean-expressioni
then hexpressioni
else hexpressioni

In SML, the else-part is not optional, and the then- and else-expressions must be
of the same type. The result of the SML conditional expression is a value, not an
action as it is in Java and other languages. The Java analog to the SML conditional
expression is the ternary operator (? :), not Java’s if-then-else.

16

Value declarations A value declaration begins with the keyword val. It is followed
by an identifier, an equals sign, an expression, and finally a semicolon. (Strictly
speaking, the semicolon is optional in many circumstances, but it does not hurt to
include it.)

val pi = 3.14159;

After a value declaration, the identifier is associated with the value that has just
been computed. The identifier is a name for the newly-computed value.

Value declarations are di↵erent from assignment statements in Java and other lan-
guages. For example, consider the following block of SML code. After the block has
been executed, what is the value of addY 7?

val y = 3;
fun addY x = x + y;
val y = 0;

If value declarations were like assignment statements, the result of addY 7 would
be 7. But in SML, the result is 10. When the function addY is declared, it picks up
the value of y, not the variable y.

Value declarations are actually more general than just described. A more compli-
cated structure may appear in place of the identifier. Value declarations use the
same kind of pattern-matching as function declarations.

- val x::xs = [1,2,3];
val x = 1 : int
val xs = [2,3] : int list

Function declarations As previously mentioned, a function is merely a particular
kind of value. However, creating a function with a value declaration is convoluted.
(We shall see how to do it later.) Fortunately, the designers of SML have given us a
more convenient and natural syntax.

A function declaration begins with the keyword fun, has one or more cases sepa-
rated by vertical bars, and is terminated with a semicolon. Each case consists of the
function name, an argument list, equals sign, and an expression. Across the cases,
the function names must be the same; the argument lists must have the same num-
ber of arguments, and the types must match; and the expressions must all have the
same type. Here is the declaration of a function append which joins two lists in the
same way as the operator @. The function is recursive, and its declaration follows
the usual pattern for list recursion.

fun append nil v = v
| append (u::us) v = u::(append us v);

17

4 Information Hiding

The object-oriented paradigm of Java makes it easy to combine related values into
a “package” and to hide some of the internal workings. There are similar facilities
in SML. In this section, we look at two forms of packaging and some more advanced
topics relating to functions.

Temporary values Sometimes it is convenient to give a name to a value just to use
it in an expression. The let construction was designed to do just that.

let
hdeclarationsi

in
hexpressioni

end

Any number of value and function declarations may appear, and their identifiers
may be used in the expression. The type of the let expression is the type of the ex-
pression between in and end. Here is a function that we will encounter in Section 4
of Part IV.

fun ourRev1 lst =
let

fun revAux acc nil = acc
| revAux acc (x::xs) = revAux (x::acc) xs;

in
revAux nil lst

end;

Controlling visibility Another way to package details of an implementation is with
the local-construction.

local
hdeclarationsi

in
hdeclarationsi

end;

The declarations in the first part can be used in the declarations of the second part,
but only the declarations of the second part are visible in the rest of the program.
(Think of private methods in Java.) Here is the local version of our list-reversing
function.

18

local
fun revAux acc nil = acc

| revAux acc (x::xs) = revAux (x::acc) xs;
in

fun ourRev1 lst = revAux nil lst;
end;

The choice between let- and local-constructions is largely a matter of taste. The
let-construction is an expression and can be used inside other expressions, and for
that reason, it will be more common in our work. On the other hand, the local-
construction allows several declarations to share the same “local” information.

5 More on Functions

There are some convenient (some people might say “essential”) constructions for
creating and manipulating functions.

Anonymous functions A function is, as we have seen, a kind of value. And like
other values, a function need not have a name. There are situations in which we
want to define a function—usually as an argument to another function—without
naming it. The syntax for doing that uses the keyword fn. Here is an expression for
a function which squares integers.

fn n => n * n

The value of this expression is the function that takes an integer n and produces its
square. If we wanted to square every element of a list of integers, we could use the
expression as an argument to the map function.

map (fn n => n * n) someList

Anonymous functions are usually simple, but they can be defined with multiple
cases. Our function declaration is really an abbreviation for a value declaration
in which the resulting value is a function. For example, here are two equivalent
definitions of the function square.

fun square n = n * n;
val square = fn n => n * n;

It is possible to define recursive functions with multiple curried arguments as value
declarations, but we leave the details for another time.

19

Composition You probably encountered function composition in a mathematics
course. If f and g are functions, then f � g is another function, defined by

(f � g)(x) = f (g(x)).

In SML, we might write the following function declaration.

fun compose f g = fn x => f(g x);

Actually, the composition operator is built into SML; it is o, the lowercase letter “oh.”

6 The Basis Library

Like most modern programming languages, SML has a large collection of pre-declared
datatypes and functions, organized into components called structures. You may al-
ready have seen several of the functions.

List.filter
ListPair.zip
Int.max
Int.sign
Math.sqrt

In addition to “utility functions” like the examples above, there are functions for
accessing services of the underlying operating system, including time and date, files,
and the network.

Take some time to browse the documentation at http://www.standardml.org/
Basis/manpages.html. The structures Int, List, ListPair, Math, and String
may be of the most immediate interest at this point in the course.

7 Exceptions and Options

A large portion of the computer code that has ever been written is “defensive.”
It is concerned with handling cases in which something has gone wrong: Perhaps
the user has entered an incorrect value, the end of a file has been encountered
prematurely, or a request for service has timed out. The idea of an exception makes
this kind of programming easier.

An exception is a signal that something unexpected has happened. You may have
encountered exceptions in Java, where exceptions are “thrown” and “caught.” In
SML, the ideas are much the same but the words are di↵erent; exceptions in SML are
“raised” and “handled.”

20

http://www.standardml.org/Basis/manpages.html
http://www.standardml.org/Basis/manpages.html

Declaring exceptions Some exceptions are built into SML. For example, the excep-
tion Div is raised on an attempt to divide by zero.

- 3 div 0;
uncaught exception Div [divide by zero]

raised at: stdIn:20.3-20.6

The built-in function hd returns the head of a list. (We have not mentioned it before
because pattern-matching is a safer and usually more transparent alternative.) Ob-
viously, hd may be applied only to a non-empty list. If it is applied to an empty list,
the exception Empty is raised.

- hd nil;
uncaught exception Empty

raised at: smlnj/init/pervasive.sml:209.19-209.24

We can also define our own exceptions using the keyword exception.

exception SomethingBad;
exception SomethingWorse of string;

In the second case, the exception SomethingWorse carries along with it a string,
presumably a message describing what went wrong.

Raising exceptions We signal an exception with the keyword raise. For example,
suppose that we want to “pair up” the elements in two lists, and we insist that
the two lists have the same length. Encountering lists of di↵erent lengths is an
exception.

exception UnequalLengths;

fun ourZip nil nil = nil
| ourZip (x::xs) (y::ys) = (x,y) :: (ourZip xs ys)
| ourZip _ _ = raise UnequalLengths;

The third case, in which we raise the exception, will occur only when one list is
empty and the other is not.

- ourZip [1] [2,3];
uncaught exception UnequalLengths

raised at: stdIn:26.36-26.50

(We note in passing that there is a built-in library function ListPair.zip which
does almost the same thing as ourZip. The di↵erences are that ListPair.zip
is uncurried and takes an ordered pair, and that ListPair.zip ignores any extra
elements at the end of one of the lists.)

21

Handling exceptions In all of our examples of the use of exceptions, the exceptions
are “uncaught.” (That is the word that SML uses; it should actually be “unhandled.”)
When an exception is raised, it is passed up the chain of pending function calls
until there is an expression with the keyword handle for that particular exception.
If there is no handle clause, the exception emerges at the top level, the computa-
tion stops, and a message is printed. We will discuss writing explicit handlers in
Section 9.

Option types The option type is an alternative to one kind of exception. Suppose
that we ask a function to compute a value and there is no such value. It could be
that we asked for the square root of a negative number, or we asked for an element
of a list that was not present. The keyword option gives us a way of saying “no
answer.” An option value is either NONE or SOME value.

For example, suppose that we want to know the place where a particular element
occurs in a list.

fun posOfAux _ _ nil = NONE
| posOfAux k e (x::xs) = if e = x

then SOME k
else posOfAux (k+1) e xs;

fun posOf e lst = posOfAux 0 e lst;

With these declarations, we can compute positions.

- posOf 3 [1,2,3,4];
val it = SOME 2 : int option
- posOf 0 [1,2,3,4];
val it = NONE : int option

One cost of using the option type is that the receiver of an option value must decode
it. A robust program will have branches for both NONE and SOME. Also, if there is a
result, it must be removed from the SOME-expression. The case statement, described
in Section 8, provides a convenient way to handle results of type option.

One useful built-in function is valOf which behaves as if it were declared as follows.

fun valOf NONE = raise Option
| valOf (SOME k) = k;

The use of valOf is limited by the fact that one must already know that the argument
is not NONE.

22

8 More on Patterns

Here we present a few syntactic constructions that extend and facilitate pattern-
matching.

Case expressions We can take advantage of pattern-matching within arbitrary ex-
pressions, not just in function declarations. For an example, recall the function
posOf which we discussed when studying the option type. The function posOf
takes an element and a list and returns a result of type int option. That is, it
returns either NONE or SOME j, where j is of type int. A case expression gives us a
natural way to handle the two kinds of values returned by posOf, as the following
expression illustrates.

case posOf elt someList of
NONE => expression for the NONE case

| SOME v => expression involving v

Here is the syntax for the case expression.

case hexpressioni of
hpattern1i => hvalue1i

| hpattern2i => hvalue2i
| ...

Just as in a function declaration, the patterns in a case expression must cover all of
the possible forms of the given expression. The result of the case expression is the
value that corresponds to the first-matched pattern.

The case expression is a very general construct. The if-then-else expression is
really an abbreviation for a case expression.

case booleanExpression of
false => falseExpression

| true => trueExpression

Further, pattern matching in functions is reducible to a case expression. Consider
this declaration for a function that tells us whether a list is empty. (The function
null is actually built-in to SML.)

fun null aList =
case aList of

nil => true
| (x::xs) => false;

Our former syntax is clearer and easier to use, but it adds no fundamental power to
the language.

23

Syntactical detail: When case expressions are nested, or when case expressions are
combined with pattern-matching in function declarations, the vertical bar is some-
times ambiguous—the system does not know to which expression the bar applies.
In those cases, it is necessary to enclose the inner case expression in parentheses.

Anonymous variables Sometimes we do not care about naming a variable. Con-
sider the declaration of the map function.

fun map f nil = nil
| map f (x::xs) = (f x) :: (map f xs);

The argument f in the first line is unnecessary; it is never used. Although we do not
have to name it, we do have to reserve a position for it in the argument list. SML
uses the underscore character _ as a place holder or anonymous variable.

fun map _ nil = nil
| map f (x::xs) = (f x) :: (map f xs);

Anonymous variables are frequently seen in pattern-matching. Here is a variation of
the function null which we used to illustrate the case expression.

fun null nil = true
| null (_::_) = false;

Anonymous variables can also appear in value declarations. Suppose we have a
function that returns an ordered pair, but we only care about the first component.
We could write the following declaration.

val (first,_) = pairProducer arguments;

In a strict sense, anonymous variables are unnecessary, but they do make code more
readable.

9 More on Expressions

An expression is a sequence of symbols that satisfies certain syntactic specifications.
An expression produces a value. Here is an incomplete list of expressions.

• A constant term, like 32 or true, is an expression.

• A single identifier, like myFunction or k, is an expression.

• An expression may be formed by putting two expressions next to one another,
to signify function application.

24

• An expression may be formed by putting an infix operator, like + or :: or
orelse, between two expressions.

• Expressions may be formed with the keywords if-then-else, case-of, let-in-end,
and raise.

• Expressions denoting anonymous functions are formed with the keyword fn.

There are, of course, conditions on the component expressions. The two parts of
an infix expression, for example, must have values whose types are appropriate
for the infix operator. The expression after the keyword raise must evaluate to
an exception. In a programming languages course you will learn about syntactical
specifications and about the orthogonal conditions imposed by the type system.

One kind of expression that is not in the above list involves the keyword handle.
The syntax is simple; here is an example.

hd hlist-expressioni
handle Empty => someDefaultValue

| Div => anotherDefaultValue
| Option => aThirdDefaultValue

If the hlist-expressioni evaluates to a non-empty list, then the first element of that
list is the result of our expression, and the handle part contributes nothing. If
the hlist-expressioni evaluates to nil, then the application of hd raises the ex-
ception Empty, and our expression returns someDefaultValue. If evaluating hlist-
expressioni raises Div or Option, then our expression will return one of the other
default values.

To pass type-checking, all of the default values (the expressions after the symbol
=>) must be of the same type as the expression before handle. Any expression of
the appropriate type may appear after the symbol =>; one can even raise another
expression there.

When an exception is raised, computation stops. If the exception can be handled
locally, the expression returns a value to the surrounding environment and compu-
tation continues. If the exception cannot be handled locally, it is passed to the next
larger expression and is either handled there or passed on further. If the exception
ever reaches the outermost level, the computation is aborted and we see the familiar
“uncaught exception” message.

The list of exceptions in a handle clause may be incomplete. An exception that does
not match any element of the list is passed on to the surrounding environment. If
we want to handle all exceptions, we can use an anonymous variable, which matches
any exception.

25

... handle Empty => specificDefaultValue
_ => genericDefaultValue

Exceptions may be declared to carry extra information. For example, the exception
Error might contain a string with a description of what went wrong.

exception Error of string;

hstring-expressioni
handle Error msg => msg

| _ => "unknown error"

The examples in this section are intended to illustrate how exception-handling op-
erates; they are not examples of good programming practice. In particular, it is
dangerous to return a value when an error has occurred unless that value is truly
“correct” for the surrounding program.

In contrast to the general principle of separating the “returned value” from a “status
message,” the type real contains two values that signal errors. These values exist
in an attempt to avoid raising exceptions in real arithmetic. The values are inf,
“infinity,” and nan, “not a number.”

- 4.7/0.0;
val it = inf : real
- 4.7/0.0*(~1.0);
val it = ~inf : real
- 4.7/0.0*0.0;
val it = nan : real
- 0.0/0.0;
val it = nan : real
- 4.7/0.0-4.7/0.0;
val it = nan : real

26

Part III

An SML Style Guide

Like English prose, computer programs can be presented clearly and elegantly. Part
of the course is to develop your judgment and teach you how to write clean, crisp,
and correct code. The guidelines here, although by no means complete or authori-
tative, give you a place to start.

1 Absolutes

• The code in the files you submit must compile without errors or warnings
other than the warning “calling polyEqual”. No partial credit will be given for
code that does not compile.

• Be sure that your code conforms exactly to the specifications in an assignment.
In particular, the identifiers must be spelled correctly and the functions must
have the correct types.

• Use spaces, not tab characters. (This is to help provide a uniform view of a
file, regardless of where it is viewed or printed. The sml-mode in emacs on the
Computer Science systems will insert spaces when you press the tab key.)

• No line may exceed 80 characters.

If for some reason you develop programs on another platform (in particular, if you
import files from MS Windows), then you should explicitly convert the file to the
proper format. The utility program

/common/cs/cs052/bin/formatCheck

will verify (and, with the -f option, attempt to repair) the format of a file. Be aware
that long lines will be broken to obey the 80-character limit, which may cause your
program to fail. Given the -h option, formatCheck will print a short description of
itself.

2 General Points

• Be consistent. You are encouraged to experiment with di↵erent formats at
di↵erent times, but do not do it in a single assignment.

27

• Pay attention to style from the time you begin to write, and use it as an aid in
structuring your code. Contrary to your feelings as time runs short, it is never
expedient to write sloppy code and “fix it” later.

• Use blank lines to separate logically separate parts of a file. For example,
two di↵erent function declarations should be separated by a blank line. Con-
versely, do not insert blank lines where they would separate closely related
parts of your code.

3 Comments

• Always start a file with a comment, indicating what it is, who wrote it, when,
and why. See Table 2 for an example.

• Comments should go above the code, or in the case of very short comments,
to the right.

• Avoid useless comments, like the one below.

n + 1 (* add one to n *)

• Avoid over-commenting. We will discuss this topic further in class. There are
(at least) two competing philosophies: One, like Java’s javadoc system, says
that every publicly-accessible function should have a comment indicating its
type, its semantics, and a description of its use. Another says that most of
that information ought to be embedded in the identifier names and the code
structure.

• When multi-line comments are necessary, use the format of the comment in
Table 2.

• Indent comments by the same amount as the code.

4 Names

• Use descriptive names. For the most part, one character variable names are
appropriate only within a function definition or a block.

• Use the standard convention for upper and lowercase letters, as in Table 3. In
this course, we may not cover all the language features listed in the table.

28

(*
* producer.sml

*
* Rett Bull

* August 1, 2003

* CS 52, Assignment -3, Version 2

*
* Provides an abstraction for an "input stream." A

* producer is an entity that supplies a sequence of

* values, using a hidden state--and therefore

* violating the functional paradigm. This code was

* written as an experiment with SML references.

*
* The following functions are implemented:

*
* - isValid : ’a producer -> bool, tells if there is

* an element at the front of the stream.

* - isActive : ’a producer -> bool, tells if the stream

* has not terminated. (Note isActive

* being false implies isValid is also

* false.)

* - current : ’a producer -> ’a, gives the current

* element in the stream.

* - advance : ’a producer -> unit, advances the stream

* one element. Executed only for the

* side-effect.

* - create : (’s -> ’s option) ->

* (’s -> ’a) -> ’s -> ’a producer,

* creates a producer from three items:

* + a next-state function,

* ’s -> ’s option, to advance to the

* next state (where NONE signifies

* that there is no next state and

* the producer is finished);

* + a value function, ’s -> ’a, to

* extract the next value from the

* state; and

* + an initial state.

*)

Table 2: A sample header comment.

29

identifier style example

Variables initial lower case letter; embedded
upper case for separate words

nodeCount

Constructors initial upper case letter; embedded
upper case for separate words

TreeNode

Exceptions just like constructors BadInputData

Types all lower case, with underscore as a
separator

binary_tree

Signatures all upper case, with underscore as a
separator

BINARY_TREE

Structures initial upper case letter; embedded
upper case for separate words

BinaryTree

Functors like structures, with Fn appended BinaryTreeFn

Table 3: Capitalization conventions in SML.

5 Indentation

• Choose a standard number of spaces for indentation and stick to it. Most
programmers use between two and eight spaces.

• Professor Bull prefers the following indentation scheme, which emphasizes
vertical alignment. The corresponding arguments to a function appear in a sin-
gle column, and the then-expression is directly over the correxponding else-
expression. See the textbooks and references on the web for other schemes.
Again, consistency within a file is important.

fun f nil nil = ...
| f (x::xs) nil = ...

if bool1
then expn1

else if bool2
then expn2
else expn3

case expn of
pat1 => ...

| pat2 => ...

val bigSum = longExpression +
anotherLongExpression

30

fun longFunctionName lotsOfArguments =
expressionTooLongtoFitAbove

fun myReverse u =
let

fun myRev nil y = y
| myRev (x::xs) y = myRev xs (x::y)

in
myRev u nil

end

6 Parentheses

• Avoid extraneous parentheses. Parentheses are used di↵erently in SML than
in Java or other languages. The expression f x is usually preferable to f(x).

• Use parentheses to disambiguate nested blocks involving case or if-then-else
constructions. (Almost always, there is a way to avoid deep nesting of if-
then-else. Look for it.)

• Use parentheses to emphasize the logical structure. Although the parentheses
in the example below are not required by the language, they show the structure
of the third argument to f.

f u v (if boolTest then w else x)

7 Pattern Matching

• Avoid incomplete pattern matchings. These will generate warnings, meaning
that your work will get no credit. Use an exception if you believe (if you really
believe and can prove it!) that you have covered all the cases that will actually
occur.

exception ThisCannotHappen;

fun f pattern1 = ...
| f pattern2 = ...

...
| f _ = raise ThisCannotHappen;

31

8 Verbosity and let Expressions

• In general, organize your code so that the logical structure is clear and simple,
but not fragmented. The let expression is one example of a construction that
can be used to clarify a block of code—or overused to muddle it.

• Use let expressions when it improves e�ciency. For example, the function
below is ine�cient because it makes two recursive calls.

fun uniquify nil = nil
| uniquify (x::xs) = if member x (uniquify xs)

then uniquify xs
else x::(uniquify xs);

Using a let expression is much better.

fun uniquify nil = nil
| uniquify (x::xs) =

let
val recResult = uniquify xs

in
if member x recResult

then recResult
else x::recResult

end;

• Use let expressions to “protect” auxilliary functions from the surrounding
functions, as in the example below.

fun myReverse u =
let

fun myRev nil y = y
| myRev (x::xs) y = myRev xs (x::y)

in
myRev u nil

end;

• Use let expressions to improve readability. Compare the two declarations of
removeNegatives:

fun removeNegatives nil = nil
| removeNegatives (x::xs) =

if x < 0 then removeNegatives xs
else x::(removeNegatives xs);

fun removeNegatives nil = nil
| removeNegatives (x::xs) =

32

let
val isNeg = x < 0;
val recResult = removeNegatives xs;

in
if isNeg then recResult else x::recResult

end;

The two declarations are operationally identical, and we could argue about
which is more readable. Although it is a judgment call in this case, the choice
is often clear. As the expressions within the let become more complicated,
the second form becomes preferable.

9 Verbosity and Booleans

• Remember that if-then-else returns a value, and never write

if expr then true else false

That code can always be replaced simply by expr.

• Never write expressions like if cond = true or if cond = false. They can
be replaced by if cond and if not cond.

• Try to avoid repeating sub-expressions. For example, the expression

if boolTest
then f u v w
else f u v x

can be written more clearly and simply as

f u v (if boolTest then w else x)

The parentheses are not necessary, but they clarify the structure.

33

Part IV

Idioms and Examples

The syntax of a programming language specifies how the language is written—the
order of symbols and where to put braces and semicolons. It is essential that a
programming language have an unambiguous syntax; otherwise we could not dis-
tinguish between correct and incorrect programs. On the other hand, learning the
syntax of a programming language is the easiest and least important part. What we
really care about is the semantics of the language—what the programs do—and the
idioms of the language—the patterns that programmers have developed to use the
language to its fullest extent.

1 Getting Started

The best way to learn SML is to sit down at a computer and experiment with it.
Work through the examples and practice problems of this section. Invent your own
variations.

Let us begin by looking at a simple SML function, one that takes a pair of integers
and returns their di↵erence.

fun difference (a,b) = a - b;

The keyword fun indicates that we are defining a function. The name of the function
is di↵erence. It takes a pair as an argument and (after the equals sign) returns the
result of a subtraction. The semicolon concludes the declaration.

If we were to type that declaration into the SML system, we would see the response
below. (Recall our the convention that input from the user is shown in purple and
the system’s response is in green. The hyphen is the prompt indicating that SML is
ready for input.)

-fun difference (a,b) = a - b;
val difference = fn : int * int -> int

The response says that we have created a value named difference which is a func-
tion that takes a pair of integers and produces an integer. We will discuss how the
system deduces the types a little later. Notice that the result of our declaration is a
value which happens to be a function.

Now that we have a function, we can apply it.

34

- difference(94,52);
val it = 42 : int

The system applied the function to the argument and obtained a value, indicated by
the keyword val, named it which happens to be the integer 42.

Had we wanted to, we could have given the resulting integer a name.

- val fourtytwo = difference(94,42);
val fourtytwo = 42 : int

Everything in SML is a value. A function is simply a special kind of value.

Practice Problem 1. For each expression below, write an equivalent one that is sim-
pler.

a. a andalso not a

b. a orelse (not a andalso b)

c. (not a orelse b) andalso
(not b orelse c) andalso
(not c orelse not a) andalso
(not c orelse not b)

Practice Problem 2. Some of the expressions below contain errors. For each one,
diagnose the error, or if there is no error, give the result evaluating the expression.

a. 3+4*11

b. 3/4.0

c. 21 div 2 mod 5

d. 1-2-3-4

e. 2.0<3.0 orelse 7<=5

f. if 2.0<=3.5 then 6+11

Practice Problem 3. In Section 1 of Part II, we saw how to turn a digit (a character
between #"0" and #"9") into the corresponding integer. Write a simple function
intToDigit that does the opposite.

Practice Problem 4. Write a function isEven that returns true exactly when its ar-
gument is an even integer.

Practice Problem 5. Write a function circleArea to compute the area of a circle of
a given radius. Make sure that the radius and the area are of type real. The value

35

of ⇡ is available as Math.pi.

Practice Problem 6. Give the type signatures of the following functions.

a. fun f(a,b,c) = if a<b then c else false;

b. fun g(a,b,c,d) = if a<b then c else d;

c. fun h(a,b,c,d,e) = if a<b then c+d else e;

d. fun i(a,b,c,d) = if a<b then c+1.0 else d;

2 Curried Functions

A careful reader will have observed that we said that the function difference is
applied to the “argument,” not “arguments.” The function difference is not a
function of two variables, as you might naturally have assumed. Rather, it is a
function of one variable, a variable that happens to be a pair of type int * int.

All functions in SML are functions of one variable, a fact that reflects a very powerful
idea. Let us write the di↵erence function in another way.

- fun curriedDifference a b = a - b;
val curriedDifference = fn : int -> int -> int

The only di↵erence between this function and the original is that we have listed the
arguments a and b separately. If we apply the new function, we obtain the expected
result.

- curriedDifference 94 52;
val it = 42 : int

But what kind of creature is curriedDifference with a type signature of int ->
int -> int? Let us try an experiment.

- curriedDifference 94;
val it = fn : int -> int

Applying curriedDifference to a single argument produced a function—one that
is ready to receive another integer argument. The type signature int -> int -> int
is interpreted as int -> (int -> int). The function curriedDifference takes
an integer and produces a function of type int -> int. The resulting function is
ready to take its second argument.

We say that our original di↵erence function that takes a pair is in uncurried form,
while our new version is curried. The name is in honor of the mathematical logician
Haskell B. Curry; it has nothing to do with tasty food.

36

The distinction between uncurried and curried functions may appear at first to be
petty and arcane. After all, both functions do the same thing. However, as we
will soon see, curried functions are exceedingly useful. We can think of curried-
Difference as a “factory” that takes an integer like 94 and produces a function
that transforms a value n into 94 - n. That resulting function is available to be an
argument to still another function.

Practice Problem 7. The following functions are curried versions of the ones you
encountered in Practice Problem 6. Give the type signatures for each one.

a. fun f a b c = if a<b then c else false;

b. fun g a b c d = if a<b then c else d;

c. fun h a b c d e = if a<b then c+d else e;

d. fun i a b c d = if a<b then c+1.0 else d;

3 Lists

Lists are a basic data type in SML. The list [2,4,6,8] has four elements, each of
which is an integer. In SML, lists are homogeneous; all the elements of a list must be
of the same type.

- [2,4,6,8]
val it = [2,4,6,8] : int list

The system’s response indicates that the value is a list of integers.

Lists are defined recursively. The empty list is [] or nil. Any other list has a first
element; when we remove the first element, we have the rest of the list—which is
another list. A one-element list has a value as its first element, and the rest of the
list is empty. To add a new element to a list, we use the operator ::.

- 0::[2,4,6,8]
val it = [0,2,4,6,8] : int list

Notice the asymmetry; the value to the left of :: is an element, while the value to the
right is a list. The square bracket notation is simply a convenience. The expression
[2,4,6,8] is an abbreviation for the more cumbersome notation

2::(4::(6::(8::nil)))

37

Strictly speaking, the parentheses are unnecessary. We say that the :: operator “as-
sociates to the right.” Most other operators, like addition and subtraction, associate
to the left.

We can write a recursive function to compute the length of a list. The length of the
empty list is zero, and the length of a non-empty list is one more than the length of
the rest of the list. We named the function ourLength to avoid confusion with the
built-in SML function length.

- fun ourLength nil = 0
| ourLength (x::xs) = 1 + (ourlength xs);

val ourLength = fn : ’a list -> int

There are several features of this definition to notice. The first is that it employs
pattern-matching. There are two cases, or “patterns.” In applying the function, the
SML system tries to match the actual argument with each pattern, in order from the
top down. If the first pattern matches, if the argument is the empty list in this case,
the result is 0. Otherwise, the second pattern matches, and the result involves a
recursive call.

The type signature ’a list -> int indicates that our length function is polymor-
phic. The expression ’a is a type variable; it can be any type. The function takes any
kind of list and produces an integer.

There are several syntactic details to observe in our example. The di↵erent patterns
are separated by the vertical bar |, and the semicolon does not appear until after
the last pattern. Diverging from the usual mathematical notation for functions,
we can write ourLength xs without parentheses around the argument. The other
parentheses are necessary, however. The parentheses around (x::xs) are needed to
show that the pattern is a single argument to the function. The parentheses around
(ourLength xs) are needed because the SML system reads from left to right. If
the parentheses were omitted the system would complain that we were asking it to
add 1 to ourLength, and it is impossible to add an integer to a function.

The use of x::xs is common, primarily because xs is read “excess” and indicates
the rest of the list.

4 List Recursion

Lists are defined recursively, and functions on list can follow that definition. It is a
pattern that you will use frequently. For example, suppose that we want to square
every element in a list of integers.

- fun square y = y * y;

38

val square = fn : int -> int
- fun squareAll nil = nil

| squareAll (x::xs) = (square x) :: (squareAll xs);
val squareAll = fn : int list -> int list

The function squareAll squares all the elements in a list of integers. It takes a list
of integers and produces a list of integers (of the same length).

The pattern in the declaration of squareAll is the standard one for list recursion.
There are two cases, one for the empty list and one for other lists.

Practice Problem 8. Write a function doubleAll that doubles every element in a
list of integers.

Practice Problem 9. Write a function dup that takes a list and duplicates each ele-
ment. For example, dup [0,1,2] returns [0,0,1,1,2,2].

Practice Problem 10. Write a function undup that removes consecutive repetitions
from a list. For example, undup [0,0,1,1,1,0] returns [0,1,0]. (Hint: This func-
tion illustrates a variation on the standard pattern; there are two base cases.)

The pattern we used to declare squareAll is common, and we can generalize. The
idea is to apply a function to every element of a list and obtain a list of the results.
In other words, we want to “map” the function across the list. There is a built-in
function map that behaves in the same way as our example.

- fun ourMap f nil = nil
| ourMap f (x::xs) = (f x) :: (ourMap f xs);

val ourMap = fn : (’a -> ’b) -> ’a list -> ’b list

With this function we have a new declaration for squareAll.

- val squareAll = ourMap square;
val squareAll = fn : int list -> int list

The declaration for ourMap matches the pattern for list recursion. The only new
element is that another argument, the function to be mapped, is added.

We are now in a position to see the value of curried functions. Consider the decla-
ration below.

- val sub94All = ourMap (curriedDifference 94);
val sub94All = fn : int list -> int list

39

Recall that curriedDifference 94 is a function that takes an integer and subtracts
it from 94. The function sub94All subtracts every element of a list from 94 and
produces a new list.

Let us consider another problem, that of reversing a list. We want a function that
behaves as follows.

- ourRev0 [2,4,6,8];
val it = [8,6,4,2] int list

We have used the name ourRev to avoid confusion with the built-in function rev
which does the same thing. The pattern is the same as before, with a base case and
a recursive case, as outlined below.

fun ourRev0 nil = ??
| ourRev0 (x::xs) = ??

We need only fill in the expressions for the two results. The base case is easy; the
empty list read backwards is still the empty list. For the recursive step, we make an
illustration.

[
z }| {
8, 6, 4, 2]

2 :: [4, 6, 8| {z }]

�
��

recursive call

To reverse a non-empty list, we reverse the rest of the list and then put the first
element of the original list at the end of it. The idea is captured in the following
declaration.

fun ourRev0 nil = nil
| ourRev0 (x::xs) = (ourRev0 xs) :: x; (* error! *)

Warning! We have intentionally made a common error. Try to diagnose it before
reading further.

Remember that the :: operator takes an element and a list—in that order. In the
declaration above, we have used it backwards, giving it a list and an element. We
need a way to add an element as the final element of a list. There is no operator that
will do it directly, but an easy way is to convert the element into a list and then to
append the two lists using the append operator @.

fun ourRev0 nil = nil
| ourRev0 (x::xs) = (ourRev0 xs) @ [x]; (* correct! *)

This solution provides a clear example of list recursion and is correct, but it is not
as e�cient as possible. A di↵erent list-reversing function puts the recursion in an
auxiliary function. The advantage of having a second function is that that function
can have an additional variable which “accumulates” the result.

40

fun revAux acc nil = acc
| revAux acc (x::xs) = revAux (x::acc) xs;

fun ourRev1 lst = revAux nil lst;

The first argument to the function revAux is the accumulator. It starts out empty
and receives one element at a time from the original list. Each element goes from
the front of the original list to the front of the accumulator, so that the first element
of the original list is the first element put into the accumulator and ends up at the
end of the accumulator. The last element in the original list ends up at the front of
the accumulator. When the original list, the second argument to revAux, is empty,
the function returns the accumulator.

Practice Problem 11. Write a function that uses an accumulator to compute the
length of a list.

Practice Problem 12. Write a function pam (“map” backwards) that takes a list of
functions and applies each of them to a single argument. Give the type signature of
your function.

Sometimes we carry out recursion on several arguments simultaneously. Let us
represent polynomials as lists of coe�cients. For example, 2 + X3 is represented as
[2,0,0,1]. Write a function polyadd that computes the sum of two polynomials.
(Observe that the representation is not unique. For example, [0,1] and [0,1,0,0]
both represent the polynomial X.) To add two such polynomials, we simply add the
components of the two lists. The recursive call is made on two shorter lists.

fun polyadd pl nil = pl
| polyadd nil ql = ql
| polyadd (p::ps) (q::qs) = p+q :: (polyadd ps qs);

Practice Problem 13. Write a function polyconstmul that multiplies a constant
with a polynomial.

Practice Problem 14. Write a function polymul that multiplies two polynomials.
The following mathematical identities will be helpful.

0 · Q(X) = 0�
p0 + p1X + . . . pnXn�

· Q(X) = p0 · Q(X) +
�
p1 + . . . pnXn�1�

· Q(X)

41

5 The Three Rules of Recursion

There are many kinds of recursion. We have just seen list recursion, and in previous
course you saw numerical recursion. There will be other examples as our course
progresses.

All types of recursion have the same characteristics. There is a base case—or a col-
lection of base cases—for which the solution is immediate. And there is a recursive
step in which the solution is assembled from the solutions to simpler problems. In
the example with the variations on ourRev, the base case was to reverse the empty
list, and the result was just the empty list. The result of recursive step, applied to a
non-empty list, was constructed by making a recursive call to reverse the rest of the
list and then attaching the former first element at the end.

In the CS 52 class in the fall of 2010, we formulated three rules of recursion to
guide us in writing recursive functions. First of all, whatever kind of recursion you
are using, there must be a base case. You have to stop somewhere!

First Rule of Recursion: Remember the base case(s).

It is usually, but not always, easy to identify the base cases. In the case of list
recursion, the empty list is the base case. With numerical recursion, the values 0 or
1 often correspond to the base case. If you claim to be using recursion but cannot
identify the base cases, then you are probably making a mistake.

Second Rule of Recursion: Be sure the recursive calls are on “simpler” cases.

The second rule insures that we make progress toward a base case. Each recursive
call should be on a “simpler” case. With list recursion, that usually means a shorter
list. With numerical recursion, it usually means a smaller number.

Third Rule of Recursion: Believe . . . in the correctness of the recursive call.

Students often understand programs by walking through them, one step at a time.
While this strategy can be a good one, it fails for recursive programs and functions.
The value of recursion is that we do not have to step through it; we can be confident
that the recursive call works properly.

The principle of mathematical induction, a close relative of the technique of recur-
sion, justifies the third rule. If a recursive function gives a wrong answer, then there
must be a “simplest” argument for which the answer is wrong. For that argument,
the recursive calls have even “simpler” arguments and must give correct answers.

42

The error is therefore in assembling the final result from the recursive results—and
not in the recursive calls themselves.

The key to writing recursive functions is to decide what simpler problems to solve
and then to create a solution to a given problem from the solutions to simpler prob-
lems. There is no need to think back further into the recursion; it will only make
the problem more di�cult. The third rule is really a statement of confidence in
recursion, confidence that you will develop as you work with recursion.

In practice, there are some standard patterns that guide us. Suppose that we want
to write a function rec, and we decide that there are three arguments.

fun recur a b c = ...

Somehow, we determine that the function should be list-recursive on the second
argument. Then we have a standard pattern.

fun recur a nil c = ...
| recur a (y::ys) c = ... (recur b ys c) ...

The next steps are to determine the expression for the base case and the expression
for the recursive step. In the latter, there must be a recursive call—which acts on a
simpler instance of the list. Look back at this example and identify the uses of the
three rules of recursion.

The patterns do not provide a mechanical alternative to analysis; rather they guide
our thinking toward a correct and e↵ective use of recursion. In some cases, the pat-
tern will illuminate a flaw in our thinking and show us that recursion, or recursion
on some particular argument, is not the appropriate method to use.

6 Numerical Recursion

The classic example of recursion is over the natural numbers {0, 1, 2, . . .}. The base
case is zero, and the induction step reduces a problem about n to a problem about
a natural number less than n, usually n � 1. There are many variations; sometimes
the recursion will start at 1, and occasionally there may be several recursive calls.

One snag to implementing numerical recursion in SML is that we do not have a type
for the natural numbers; we have only int which includes negative values. Let us
put that aside for now and not worry about negative numbers. They will be easy to
add later.

Suppose that we have two functions pred and succ, which compute the predecessor
and successor of a natural number. In SML, we could define them directly using +
and -, as below, but we want to see how far we can get with only these two functions
and the constant 0.

43

fun pred n = if n = 0 then 0 else n-1;
fun succ n = n+1;

Addition is an iteration of the successor function, so we can define addition.

fun add u 0 = u
| add u v = succ (add u (pred v));

We can also define subtraction. Strictly speaking, we are defining arithmetic subtrac-
tion in which a result that would normally be negative is zero.

fun sub u 0 = u
| sub u v = pred (sub u (pred v));

In both cases, we are following the rules of recursion. The recursion is on the second
variable. We have a base case; the recursive call is on a simpler case, namely pred v;
and we believe (We do, right?) that the recursive call gives us the correct answer.

Multiplication is iterated addition, so we can define multiplication as well.

fun mul u 0 = 0
| mul u v = add (mul u (pred v)) v;

Let us expand our definitions to include negative integers. Since the recursion is on
the second argument, we need be concerned with only that argument.

fun add u v = if v < 0
then ~(add (~u) (~v))

else if v = 0
then u
else succ (add u (pred v));

fun sub u v = if v < 0
then ~(sub (~u) (~v))

else if v = 0
then u
else pred (sub u (pred v));

fun mul u v = if v < 0
then mul (~u) (~v)

else if v = 0
then 0
else add (mul u (pred v)) v;

Division is no harder except for the danger of dividing by zero. We postpone a
discussion of it until we have more facilities for handling errors.

The functions so far are not particularly useful. SML already has built-in operators
for arithmetic. The examples were chosen to illustrate numerical recursion and to

44

demonstrate how fundamental recursion is. All of arithmetic can be developed with
only succ, pred, and recursion.

Practice Problem 15. Consider the function below.

fun f(x,y) = if x = 0
then y
else f(x-1, x*y);

a. Give the type signature for f.

b. For which arguments does f terminate?

c. What is the mathematical meaning of f(x,y)?

d. Rewrite f so that it terminates on all arguments and its values are consistent with
the meaning from part c.

Let us now turn to a di↵erent example. Suppose we want to create a list of natural
numbers, starting at zero and ending at a given number. For example, [0,1,2,3,4]
is such a list. Here is one attempt that uses numerical recursion directly.

fun interval0 k = if k < 0
then nil

else if k = 0
then [0]
else (interval0 (k-1)) @ [k];

It is a perfectly good solution, except that it is ine�cient. At each recursive step
we are appending a list to a singleton, and that list is getting larger and larger. As
we will see later, this type of construction leads to an excessively large number of
operations. It is usually faster to construct lists with :: than with @. In order to
work from the front of a list, we have to allow the first element of the list to vary as
well as the last.

fun interval1 (j,k) = if k < j
then nil

else if k = j
then [j]
else j :: (interval1(j+1,k));

We now have a faster interval function, and we can construct a list starting at zero
with a call to interval1(0,k). The function interval1 is certainly recursive—it
contains a recursive call. But what about the base cases? Further, it appears that the

45

recursion is on the argument j, but that value increases in the recursive call. How is
that a “simpler case”?

The answer is that we are doing recursion not on j or k, but on the di↵erence be-
tween those two values. The base cases occur when k � j are less than or equal
to zero. The recursive call is on a simpler case because k � (j + 1) is smaller than
k � j. With this interpretation, our definition of interval1 satisfies all three Rules
of Recursion: There are base cases, the recursive call is on simpler cases, and we
see clearly how we are constructing the current case from the result of the recursive
call.

Practice Problem 16. Write a function sumInterval0 that takes a pair (m,n) of
integers and evaluates the following expression. You may assume that both m and n
are non-negative.

m + (m + 1) + (m + 2) . . . + (m + (n � 1)) + (m + n)

Practice Problem 17. Write a di↵erent function sumInterval1 that takes a pair
(u,v) of integers and evaluates the expression below. You may assume that u v.

u + (u + 1) + (u + 2) . . . + (v � 1) + v

We end the section with an interesting problem that mixes list recursion and nu-
merical recursion. Suppose we want a function subList that takes a list and a pair
(j,k), and returns a list containing of the j-th through the k-th elements of the
original list. We assume that the elements of a list are numbered starting with index
zero. Let us try to make sense out of the many di↵erent cases.

• If the given list is empty, then any sublist of it is empty.

• If k < j, then the resulting list is empty.

• If j is zero, then we may take the first element of the given list and add it to
the front of the first k-1 elements of the rest of the list.

• If j is positive, then we can discard the first element of the given list and find
the sublist corresponding to (j-1,k-1) of the rest of the list.

• If j is negative, then it is not the index of any element of the given list, and we
can find the sublist corresponding to (j+1,k) of the given list.

Before reading further, convince yourself that these cases cover all the possibilities.

We can now write an SML function that embodies our discussion.

46

fun subList nil _ = nil
| subList (x::xs) (j,k) =

if k < j
then nil

else if j = 0
then x :: (subList xs (j, k-1))

else if j < 0
then subList (x::xs) (j+1, k)
else subList xs (j-1,k-1);

Let us study the function through the three Rules of Recursion. We are doing re-
cursion on a list and on the di↵erence k � j. The base cases occur when the list is
empty and when k � j is negative.

The three recursive calls are all on simpler cases. The call subList xs (j, k-1)
is a simpler case because the list is shorter and k � j is smaller. The call subList
(x::xs) (j+1, k) is a simpler case because k � j is smaller. The call subList xs
(j-1,k-1) is a simpler case because the list is shorter.

Each of the three recursive branches gives the “correct answer.” When j is zero, we
take the first element and attach it to the sublist of size k-1. If j is negative, we
ignore that value of j and move on. (We could in fact skip some steps and take the
j-argument all the way to zero instead of just adding one.) If j is positive, then we
discard the first element of the list and adjust the indices for the rest of the list.

Finally, we must be sure that our solution is complete, that we have covered all
the cases. We have, because the list is either empty or it is not. We certainly have
covered the case in which the list is empty. And when it is not empty, we have cases
for j being negative, zero, and positive. There is no case that will “slip through the
cracks.”

7 List Recursion Revisited

Recall that the elements in a list are ordered and that an element may appear more
than once. Suppose that we want a function that will remove duplicated elements
from a list. It is easiest to start with a membership function.

fun member e nil = false
| member e (x::xs) = e = x orelse member e xs;

The function member returns a value of type bool. Notice the use of the boolean
connective orelse.

Now we can write one version of the function uniquify. We will encounter several
other versions later in the course.

47

fun uniquify0 nil = nil
| uniquify0 (x::xs) = if member x xs

then uniquify0 xs
else x :: (uniquify0 xs);

Practice Problem 18. Our version of uniquify preserves the order of the elements.
Write a version that uses an accumulator variable but does not necessarily preserve
order.

Practice Problem 19. Our version of uniquify retains the last occurrence of an
element. Write a version that preserves order but retains the first occurrence of an
element.

As a second example, we consider more complicated lists. The elements of a list
may be of any type. In particular, we can have a list of lists, . . . or even a list of
lists of lists, and so on. An example of a function that produces a list of lists is one
that produces all the permutations of a given list. Given a list argument, we want to
create a list of all the di↵erent orderings of the elements in the given list. Given the
list [1,2,3], we desire the result below.

[[1,2,3], [1,3,2], [2,1,3],
[2,3,1], [3,1,2], [3,2,1]] : int list list

For our purposes, the order of the di↵erent permutations will not matter; we just
want to make sure that we have them all. If the given list has n elements, then there
will be n! permutations.

An obvious strategy is to use list recursion. The base case is the empty list, which
has 0 elements. The result has 0! = 1 permutations—in particular, the result is not
empty! There is one possible permutation of the empty list, namely the empty list
itself. Therefore, the result of the base case will be a one-element list whose sole
element is the empty list.

fun perm nil = [nil]
| ...

We have just made good use of the First Rule of Recursion. Let us move to the Sec-
ond Rule, the recursive step. In the example with the argument [1,2,3], the recur-
sive call would naturally be on the list [2,3] and give us the result [[2,3],[3,2]].
The crucial question is “How do we incorporate the first element 1 into our recursive
result to obtain all six permutations?” Simply putting the element 1 on the front of
the recursive result will not work; it will cause a type error. Putting the element 1
on the front of each element of the recursive result will not give rise to an error, but

48

it will yield only two of the six permutations. On reflection, we see that we want to
insert the element 1 into

• every possible position in

• every list in the recursive call.

There are two steps, and it is easiest to separate them. Let us start by considering
the “every possible position” part and write a function that will insert an element
into every possible position of a single list.

fun insEverywhere e nil = [[e]]
| insEverywhere e (y::ys) =

(e::y::ys) :: (map (fn u => y::u) (insEverywhere e ys));

It is worthwhile to spend some time on insEverywhere. If we are to insert an
element e into a list of length n, there are n + 1 places to put it. In particular, if the
list is empty, there is exactly one place to put it, and the result of inserting e into
the empty list is [e]. The result of insEverywhere is a list of all possibilities, so the
result in the base case is a list with one element, namely the only possibility [e].

The recursive step is most easily understood from the inside out. The recursive call
insEverywhere e ys produces a list of all the possible results of inserting e into
ys. If we add y onto the front of each of those lists, with map, then we obtain some of
the ways to insert e into ys. In fact, we obtain all of the ways in which e is inserted
after the first element y. The only possibility left out is the one in which e comes
before y, and that is the one that is added to the front of the result.

Now that we have insEverywhere, let us forget about how it works and use it to
complete the construction of the permutation-generating function. We must apply
insEverywhere to “every list in the recursive call.” It is natural to try to use map.

| perm (x::xs) = map (insEverywhere x) (perm xs);

The expression with map gives us all the permutations, but it is of the wrong type.
It is a list of lists of lists instead of a list of lists. The function insEverywhere
provides a list for each element of the recursive call, so in the case of [1,2,3] we
obtain

[[[1,2,3], [2,1,3], [2,3,1]],
[[1,3,2], [3,1,2], [3,2,1]]] : int list list list

We need one more function, one that appends all the lists in a list of lists. Fortu-
nately, it is an easy application of list recursion.

fun appendAll nil = nil
| appendAll (z::zs) = z @ (appendAll zs);

We can now write the function perm in all its glory.

49

fun perm nil = [nil]
| perm (x::xs) =

appendAll (map (insEverywhere x) (perm xs));

Take some time to examine the structure of perm and understand how it creates the
final result from the recursive call.

Practice Problem 20. Recall that a list is a palindrome if it is its own reverse. The
following function purports to detect palindromes. Is it correct? Explain.

fun isPalindrome xl =
let

fun isPalAux acc nil = null acc
| isPalAux acc (x::xs) = acc = x::xs orelse

acc = xs orelse
isPalAux (x::acc) xs;

in
isPalAux nil xl

end;

8 An Aside: When Not to Use Recursion

Recursion is a powerful technique, and the patterns that we have presented are
appealing. However, not every function is defined recursively, and in those cases
there is no need to use a recursive pattern.

Consider the example of creating a “list palindrome.” Given [1,2,3], we can create
the list [1,2,3,3,2,1] which is the same when read forward or backward. The
strategy is to append the original list with its reversal. (Astute readers will observe
that we are creating only the list palindromes of even length.) We can accomplish
the task with a simple function.

- fun listpalindrome xl = xl @ (rev xl);
val listpalindrome = fn : ’a list -> ’a list

- listpalindrome [4,7];
val it = [4,7,7,4] : int list

Notice that there is no recursion here, even though one of the component functions,
rev, is defined recursively elsewhere.

Sometimes students become so attached to list recursion that they begin to write
the function using the standard pattern for list recursion.

50

fun listpalindrome nil = ...
| listpalindrome (x::xs) = ...

At best, the use of the pattern makes the code too complicated. Often, it leads to an
error. When you do use recursion, be clear about why you are doing it. Identify the
variable on which you are recursing, and understand how the final result is produced
from the recursive call. If you do not have a recursive call, then you are not using
recursion.

Practice Problem 21. Consider the parallel problem of creating a palindrome from
a string. Write a function stringpalindrome.

9 Numerical Recursion Revisited: Division

Division on the natural numbers gives us a place to exercise our facility with nu-
merical recursion. From one point of view, division is simply repeated subtraction,
just as multiplication is repeated addition. Division is a little more complicated,
however, because there are two results—a quotient and a remainder.

There is also a potential error—dividing by zero. When that occurs, we will follow
the practice of SML raise the exception Div. Review exceptions in Section 7 of Part II.

As we did with addition, subtraction, and multiplication in Section 6, we start with
the natural numbers. Given a numerator n and a non-zero denominator d, we seek
a quotient q and a remainder r satisfying

n = d · q + r and 0 r < d.

We can think of having all four variables present. We start with (n, d, q, r) =
(n, d, 0, n); the values q = 0 and r = n satisfy the equation on the left, above.
If in addition 0 r < d, then the pair (q, r) is the desired result. If not, then we
can subtract d from r and add 1 to q. The equation is still satisfied (Verify!), and we
are closer to a solution because r is smaller. In the sense of the Second Rule of Re-
cursion, a “simpler case” is one with r being closer to zero. This analysis translates
immediately to an SML function.

fun quoremAux (n,d,q,r) =
if r < d

then (q,r)
else quoremAux(n,d,q+1,r-d);

fun quorem (n,d) = quoremAux(n,d,0,n);

51

Although correct for the natural numbers, this code is painfully slow. But it is
important because it illustrates a new variation of recursion.

Later, we will look at other implementations of division, including some that mimic
the long division algorithm. For now, it is su�cient to extend our division algorithm
to all the integers. For this exercise, we adopt a convention that is used by most
mathematicians but is seldom seen on computer hardware: We insist that the re-
mainder be non-negative. There are four cases. In each one, we negate a negative
numerator or divisor, and obtain a corresponding quotient and remainder.

• 0 n and 0 < d. Our function quoremAux gives us the correct quotient-
remainder pair (q, r).

• n < 0 and 0 < d. We divide �n by d to obtain values q and r satisfying
�n = d·q+r and 0 r < 0 and rewrite the equation to obtain n = d·(�q)�r .
If r = 0, the result is the quotient-remainder pair (�q, r). If r 6= 0, we must
adjust the remainder by adding d and the quotient by subtracting 1; the result
is (�q � 1, r + d).

• 0 n and d < 0. We divide n by �d to obtain values q and r satisfying
n = (�d) · q + r and 0 r < 0. Rewriting gives n = d · (�q) + r . The result is
the quotient-remainder pair (�q, r).

• n < 0 and d < 0. We divide �n by �d to obtain values q and r satisfying
�n = (�d) · q + r and 0 r < 0. Rewriting gives n = d · q � r . As in the
second case, if r = 0, the quotient-remainder result is (q, r). If r 6= 0, then we
adjust the remainder and the result is (q � 1, r + d).

It is routine, but tedious, to translate the analysis into SML code. To make the
presentation cleaner, we use the library function Int.sign which returns ~1, 0, or
1 according to whether its argument is negative, zero, or positive.

fun quorem (n,d) =
case (Int.sign n, Int.sign d) of

(_, 0) => raise Div
| (0, _) => (0,0)
| (1, 1) => quoremAux(n,d,0,n)
| (~1, 1) => let

val (q,r) = quoremAux(~n,d,0,~n)
in

if r=0 then (~q,r) else (~q-1,r+d)
end

| (1,~1) => let
val (q,r) = quoremAux(n,~d,0,n)

in

52

(~q,r)
end

| (~1,~1) => let
val (q,r) = quoremAux(~n,~d,0,~n)

in
if r=0 then (q,r) else (q-1,r+d)

end;

Practice Problem 22. Integer division in most computer languages follows the di-
vision method of the underlying hardware. The usual method is to round toward
�1, in which case the remainder takes the sign of the divisor. Modify the function
quorem to satisfy that condition on the remainder.

10 Types

We have seen a collection of built-in types and turn now to programmer-defined
types. We can construct new types out of old ones, and we have the option of using
recursion.

10.1 Naming Types

The keyword type is used to define a one-word name for a known type. It is analo-
gous to the val declaration for values.

- type ilist = int list;
type ilist = int list

After the definition, int list and ilist are names for the same type. We can, for
example, compare a value that is identified as an int list with one identified as
an ilist.

Type definitions may be parameterized, making them more interesting and more
useful.

type (’d, ’r) mapping = (’d * ’r) list;

A mapping is a list of ordered pairs; it is one way to represent a function from
one set of values to another. For example, we might want to map words to their
definitions using a (string, string) mapping.

53

10.2 Datatypes

Even with parameters, type definitions are of limited use; they simply provide ab-
breviations. A more powerful construction uses the keyword datatype.

- datatype bit = Zero | One;
datatype bit = One | Zero

Here we have created a brand new type whose name is bit and whose two values
are Zero and One. In a subsequent section, we will have use for this type. By itself,
the type is not much use; we must create functions that operate on the values of the
type. We may use pattern-matching on values of the type.

- fun complement Zero = One
= | complement One = Zero;
val complement = fn : bit -> bit

Practice Problem 23. Pretend that the type bool does not exist. Define it and the
associated functions not, andalso, and orelse. (For this exercise, assume that
andalso and orelse evaluate both their arguments. SML functions evaluate all
their arguments, so it is not possible to obtain the short-circuit behavior of these
operations with functions.)

Practice Problem 24. With the result of the previous exercise, we try to define a
function ifthenelse as follows.

- fun ifthenelse true texpn _ = texpn
= | ifthenelse false _ fexpn = fexpn;

Is this a correct definition? Is it an acceptable replacement for the built-in if-then-else
expression?

10.3 Example: Backward Lists

The words Zero and One are called data constructors in SML. They may be used by
themselves, as they are here, or they may be tags for more complicated structures.
Consider the case of backward lists. Instead of all of the activity occurring at the
head of a list, everything happens at the tail. For ordinary lists, we have the notions
of first, rest, and cons. The last operation, cons, forms a new list from an element
and a list; it is the analog of the SML operation ::.

54

- datatype ’a tsil = Lin | Snoc of ’a tsil * ’a;
datatype ’a tsil = Lin | Snoc of ’a tsil * ’a

Here, we have used the SML convention of writing types in lower case and data con-
structors with a leading capital letter. We can now proceed to define our backward
list functions.

- exception Ytpme;
exception Ytpme
- fun tsrif Lin = raise Ytpme
= | tsrif (Snoc(_,x)) = x;
val tsrif = fn : ’a tsil -> ’a
- fun tser Lin = raise Ytpme
= | tser (Snoc(sx,_)) = sx;
val tser = fn : ’a tsil -> ’a tsil

Notice how the recursion follows the structure of the datatype. There is a base case
involving Lin and a recursive step involving Snoc.

Practice Problem 25. Write a tsil-reversing function.

Practice Problem 26. Write a function to append two values of type tsil.

Practice Problem 27. Pretend that the option type is not present in SML and give a
parameterized type definition for it. Define the function valOf.

10.4 Example: Nested Boxes

Nested boxes provide another example of user-defined types.1 Nested boxes are
colored cubes that fit inside one another. The innermost box contains “nothing”;
every other box contains another box. A box that is not “nothing” has a dimension,
a color, and a box inside of it. Here are the initial declarations.

exception NestedBox;

datatype color = Red | Orange | Yellow |
Green | Blue | Violet;

datatype nbox = Nothing
| Cube of real * color * nbox;

1This example is adapted from Hansen and Rischel, Introduction to Programming in SML, sec-
tion 8.1

55

The exception is there because we have conditions on type nbox: the dimension
must be positive, and an inner box must have a smaller dimension than one con-
taining it.

It may seem strange to have a value Nothing, for it is not really a box. But it is more
convenient to consider Nothing to be a cbox than to deal with the special cases that
arise when a box may or may not contain something. Here is an example of three
nested boxes .

Cube(4.0,
Green,
Cube(2.5,

Red,
Cube(0.9,

Yellow,
Nothing)))

Suppose that we want to add to our nest a new box of a certain size and color. If the
new box is larger than the outer box of our nest, then we simply put the nest in the
new box. If the new box is smaller, then we (recursively) place the new box inside
the outer box. This strategy is reflected in the following SML function which places
a new box of size dim and color col into an existing box. The result is a new nest
with one more box.

fun insert(dim, col, Nothing) =
if dim <= 0.0

then raise NestedBox
else Cube(dim, col, Nothing)

| insert(dim, col, Cube(d, c, b)) =
if dim <= 0.0

then raise NestedBox
else if dim < d

then Cube(d, c, insert(dim, col, b))
else if dim = d

then raise NestedBox
else Cube(dim, col, Cube(d, c, b));

As you can see, we have preserved the conditions that the dimensions are positive
and that a smaller box cannot contain a larger one. The code is a little cluttered
because we must test for a non-positive dimension in each of the branches.

Practice Problem 28. Write a function difflist that computes the sequence of
dimension-di↵erences of a nest of type nbox. For example,

56

difflist Nothing returns [],
difflist(Cube(1.0,Green,Nothing)) returns [], and
difflist(Cube(1.0,Green,Cube(0.5,Red,Nothing))) returns [0.5].

Practice Problem 29. Suppose that nbox had instead been defined as a list.

type nbox = (real * color) list;

Write functions insert and difflist for this version of the type.

Practice Problem 30. [Challenging] Consider a variation mnbox of the nested box
example in which a box may contain multiple boxes. Packing cubes into larger cubes
is a di�cult mathematical problem, so we make the following simplifying assump-
tions: A non-empty cube contains cubes which all have the same size. Further, the
smaller cubes are oriented so that their sides are parallel to the sides of the enclos-
ing cube. This means that a cube of side S may contain as many as bS/sc3 cubes of
side s.2

Write a type declaration and an insert function for mnbox.

10.5 Example: Trees

Trees are ubiquitous in computer science. You will study them in depth in other
courses. Here, we simply see how they are treated in SML. A binary tree is either
empty or it is a node with a value and two subtrees. We distinguish the subtrees
as left and right. The value at a node can be a very complicated record; for our
purposes it can be as simple as a single integer.

The two subtrees of a node are called the children of the node, and the node is the
parent of its children. A leaf is a node whose two subtrees are empty. The root of a
non-empty tree is the unique node which has no parent. Here is the SML datatype.

datatype ’a binary_tree =
BTEmpty

| BTNode of ’a binary_tree * ’a * ’a binary_tree;

The datatype is recursive, which allows us to write functions that are recursive on
binary trees. For example, we can compute the number of nodes.

fun nodeCount BTEmpty = 0
| nodeCount (BTNode(lc,_,rc)) = 1 + (nodeCount lc)

+ (nodeCount rc);

2The notation bxc denotes the floor of x, the least integer not exceeding x.

57

The height of a binary tree is the length of the longest chain of nodes from the root
to a leaf. By convention, we set the height of an empty tree to �1.

fun height BTEmpty = ~1
| height (BTNode(left,_,right)) =

Int.max(height left, height right);

We can create a list of all the values in a tree. One strategy is to list a node, then
the nodes in its left subtree, and then the nodes in the right subtree. This is called
a preorder traversal of the tree.

fun preorder BTEmpty = nil
| preorder (BTNode(left, value, right)) =

value :: ((preorder left) @ (preorder right));

The type of preorder is ’a binary_tree -> ’a list. There are also an inorder
traversal which lists the value at a node after the values of the nodes in left subtree
and before those in the right subtree. The postorder traversal lists the values from
the left subtree, then the values from the right subtree, and then the value at the
current node. The functions for inorder and postorder traversals are similar to the
one for preorder.

Notice that all the functions for binary trees have the same recursive structure. It
arises from the recursive construction of the datatype, just as our pattern for list
recursion arises from the recursive formulation of lists.

Practice Problem 31. A binary search tree is a binary tree in which all the values
from the left subtree are less than the value at the node, and the value at the node
is less than all the values in the right subtree. Assume that the values in a tree are
integers. Write a function that will insert a given value into a given binary search
tree. (Philosophical point: In the functional paradigm, everything is a value. We
cannot change a value once it is created, so we do not actually “change” a binary
tree by inserting something into it. Instead, we create a new tree which is like the
old tree except that it has a new value.)

Practice Problem 32. Write a function reflect that operates on binary trees and
satisfies the following condition.

inorder (reflect bt) = rev (inorder bt)

11 Functional Programming and List Recursion

Functional programming and list recursion are orthogonal ideas, but they tend to
occur together in practice. One of the earliest functional programming languages,

58

Lisp, takes the list as its basic data structure. (Some of you may have encountered a
modern dialect of Lisp called Scheme.)

One appeal of the functional paradigm is that it is simple. There is only a limited
number of actions that we can take with functions. We may apply function to argu-
ments, use functions as arguments to other functions, and define new functions—
perhaps using existing functions as building blocks. Sometimes, when we define
new functions, we use recursion. And as we have seen, there are some common
templates for that recursion which have found their way into higher-order func-
tions, like map.

In this section, we study some of those general functions, the ones that computer
scientists expect to find in a language described as “functional.” Among those func-
tions are the following.

Application is the act of applying a function to arguments to obtain a result. It is
present in some form in virtually all programming languages.

Function definition is a facility for obtaining (and in some cases naming) new func-
tions that are created from more basic components. We have already seen
many function definitions in SML.

Composition is an operation that creates a new function out of two existing ones.
We know that SML uses o as the composition operator.

Mapping is the operation that creates a new list by applying a function to each
element of a given list. We are familiar with the SML function map.

Filtering is the operation that creates a “sublist” of the elements of a given list
that satisfy some criterion. We shall see that the SML function List.filter
encapsulates a recursive template in a way similar to map.

Folding is the operation that combines the elements of a list into a single element.
The simplest example is computing the sum of the elements in a list of inte-
gers. We shall see that folding is in one (not necessarily practical) sense the
fundamental operation of list recursion.

All of these functions are already part of SML. We give definitions here to illustrate
their connection to functional programming, lists, and list recursion.

11.1 Function Definition

Most frequently, functions are declared with the keyword fun. We have seen many
examples.

59

Many functions have names, but the names are not necessary. We can talk about
“the function that squares” or “the function that shifts the characters in a string to
uppercase” without giving them names. Such anonymous functions are handy for
one-time applications or for use as arguments to other functions. In SML, we create
anonymous functions with the keyword fn.

fn x => x*x

We can also obtain functions from application. We have already seen map which has
the type signature below.

(’a -> ’b) -> ’a list -> ’b list

If we apply map to a function of type ’a -> ’b, we obtain a function of type
’a list -> ’b list. We can leave that function anonymous or give it a name
with a value declaration.

val squareAll = map (fn x => x*x);

The important point to be made here is that functions are simply values. Like lists
and other kinds of computational objects, they exist independently of how we name
them. In the functional programming paradigm, a computation is a function that
takes input to output. We create useful computations by combining simple func-
tions using application and function definition.

11.2 Composition, Revisited

One important operation on functions is composition. The idea is that we create a
new function from functions f and g; the instructions are first apply g to obtain a
result and then apply f to that result.

In SML, the composition of f and g is written f o g, and it behaves as the anony-
mous function below.

fn x => f(g x)

If f is of type ’b -> ’c and g is of type ’a -> ’b, then f o g is of type ’a -> ’c.

11.3 Mapping, Revisited

The SML function map behaves as if it is declared as follows.

fun map _ nil = nil
| map f (x::xs) = (f x) :: (map f xs);

60

It displays all the characteristics of a list-recursive function. There is a base case,
corresponding to an argument which is an empty list. And there is a recursive step
which assembles the final result from a recursive call on a simpler case.

Keep in mind that the map function does the recursion for us. More precisely, it
encapsulates the recursion. Applying map replaces an explicit recursion. We empha-
size this point because some students are inclined to use both the function map and
an explicit recursion. One or the other is su�cient.

11.4 Filtering

It is easy to select the even elements from a list of integers. The result is a potentially-
shorter list.

fun evenList nil = nil
| evenList (x::xs) = if x mod 2 = 0

then x :: (evenList xs)
else evenList xs;

It would be equally easy to select the multiples of three . . . or any other number.
Having seen the pattern, we can write a function to select the integers with any
property.

A function that tells us whether its argument satisfies some condition is a predicate.
It is a function of type ’a -> bool. Using the example above as a template, we
can write a function that selects from a list the elements that satisfy an arbitrary
predicate.

fun filter _ nil = nil
| filter pred (x::xs) = if pred x

then x :: (filter pred xs)
else filter pred x;

As mentioned earlier, there is no need to write this definition. SML has a built-in
function List.filter.

Practice Problem 33. SML has a built-in function List.exists which has the type
signature (’a -> bool) -> ’a list -> bool. It takes a predicate and a list and
returns true if an element in the list satisfies the predicate. Write two declarations
for a function exists, one that is directly recursive and one that uses filter.

Practice Problem 34. SML has another built-in function List.all which returns
true if all the elements in the list satisfy the predicate. Repeat the previous ex-
ercise for a function all.

61

11.5 Folding

By now, writing a function to add all the elements in a list of integers is easy.

fun addAll nil = 0
| addAll (x::xs) = x + (addAll xs);

We can just as easily multiply all the integers in a list, or concatenate all the strings
in a list, or append all the lists in a list of lists.

fun multAll nil = 1
| multAll (x::xs) = x * (multAll xs);

fun concAll nil = ""
| concAll (x::xs) = x ^ (concAll xs);

fun appdAll nil = nil
| appdAll (x::xs) = x @ (appdAll xs);

The only di↵erences among these examples are the function names, the constants
in the nil case (shown above in purple), and the operations (shown in olive). There
is a clear pattern that we can use to create a general function.

fun foldr oper base nil = base
| foldr oper base (x::xs) =

oper(x, foldr oper base xs);

The function foldr has the following type signature. It takes a function, a base
value, and a list, and returns some kind of value.

(’a * ’b -> ’b) -> ’b -> ’a list -> ’b

The only concession we made in generalizing the examples is in turning the opera-
tion into a function on ordered pairs. Fortunately, there is an SML operator op that
converts a binary operation into a function on pairs. Therefore, we can rewrite all
the specific functions above using foldr.

val addAll = foldr (op +) 0;
val multAll = foldr (op *) 1;
val concAll = foldr (op ^) "";
val appdAll = foldr (op @) nil;

Syntactical detail: The space after the symbol * in the definition of multAll is nec-
essary to prevent SML from seeing a comment-closing token.

The r in foldr stands for “right.” The function accumulates values from the right:

62

addAll [1,2,3,4] means 1 + (2 + (3 + (4 + 0))).

Notice the zero on the right from the base case of the recursion. The “rightness” of
the folding function does not matter for addition, but it does make a di↵erence for
subtraction or division.

There is also a function foldl that accumulates from the left. It uses the argument
base as an accumulator. For addition, we have the following.

fun addAllAux acc nil = acc
| addAllAux acc (x::xs) = addAllAux (x + acc) xs;

val addAllLeft = addAllAux 0;

Using that as a guide, we can give a general definition of foldl. It has the same type
signature as foldr, but it behaves slightly di↵erently.

fun foldl oper base nil = base
| foldl oper base (x::xs) =

foldl oper (oper(x,base)) xs;

An alternate declaration of addAllLeft uses foldl.

val addAllLeft = foldl (op +) 0;

It is a function that accumulates from the left:

addAll [1,2,3,4] means 4 + (3 + (2 + (1 + 0))).

Practice Problem 35. By hand, compute the two values

foldr (op -) 0 [4,7] and foldl (op -) 0 [4,7].

Practice Problem 36. What do the following functions do?

foldr (op ::) nil
foldl (op ::) nil

Practice Problem 37. The function foldr (op ::) has the type signature

’a list -> ’a list -> ’a list.

What does the function do?

Practice Problem 38. Write a one-line function using foldr that computes the length
of a list. Write another version that uses foldl.

Practice Problem 39. Consider a function foldsubl that takes a non-negative in-
teger n and returns the value foldl (op -) 0 [0,1,...,n].

a. Give a complete SML declaration for foldsubl. (Hint: Recall the function interval1

63

from Section 6.)

b. Use your declaration from part a to compute map foldsubl [0,1,...,9].

c. Generalize the result of part b and give an alternate, non-recursive declaration for
foldsubl. Prove, by mathematical induction that both declarations give the same
values for non-negative arguments.

Practice Problem 40. Repeat Practice Problem 39 with a function foldsubr that
uses foldr instead of foldl.

Practice Problem 41. [Challenging] Prove that foldr f b xl gives the same result
as foldl f b (rev xl).

Practice Problem 42. Show that map and filter can be defined, without using re-
cursion, in terms of foldr.

Practice Problem 43. Show that foldr can be defined, without using recursion, in
terms of foldl.

Practice Problem 44. [Challenging] The built-in SML function ListPair.zip is nat-
urally defined by simultaneous recursion on two lists. Can it be defined, without
recursion, using only the folding functions?

fun ListPair.zip (_, nil) = nil
| ListPair.zip (nil, _) = nil
| ListPair.zip (x::xs, y::ys) = (x,y) :: (ListPair.zip(xs,ys));

Practice Problem 45. [Challenging] After solving the previous problems, one might
conjecture that every use of recursion can be replaced with applications of foldl.
Prove the conjecture or find a counterexample.

12 An Aside: E�ciency

The primary goal of a programmer is to write correct programs. A secondary goal is
to make them run fast. Although it is a little o↵-topic for this course, we list some
things that a programmer might do to increase speed.

Keep in mind that it is rare for the performance of a specific function to be critical.
Most of the time—especially in introductory computer science courses—speed is not
important at all. In the few cases in which it does matter, one must take the time
to identify which functions are taking excessive time and to focus one’s e↵orts on
those parts of the program.

64

12.1 Reducing the Number of Steps

Consider the problem of raising a real number to a power. For the simplest function,
it takes n � 1 multiplications to compute xn. Let us assume that n is non-negative.

fun power0 x n =
if n = 0

then 1.0
else x * (power0 x (n-1));

However, if we observe a couple of mathematical identities, we can reduce that
number significantly.

x2n = (xn)2 and x2n+1 = (xn)2x

Translating directly gives the following function.

fun power1 x n =
if n = 0

then 1.0
else if n mod 2 = 0

then (power1 x (n div 2)) * (power1 x (n div 2))
else (power1 x (n div 2)) * (power1 x (n div 2)) * x;

If the system actually computes both copies of (power1 x (n div 2)), then we
have gained nothing. Many modern programming language systems will recognize
the “common subexpression” and compute it only once. If we want to be absolutely
sure, we can write it di↵erently.

fun square (x : real) = x * x;
fun power2 x n =

if n = 0
then 1.0

else if n mod 2 = 0
then square (power2 x (n div 2))
else square (power2 x (n div 2)) * x;

Notice that we had to be explicit in the definition of square that the argument is of
type real. Otherwise, SML would have assumed the type int.

Practice Problem 46. Experiment with the three versions of the power function by
computing 1.0n for large values of n. Can you tell if the SML interpreter eliminates
common subexpressions? Here is a framework for timing the execution of a func-
tion.

65

fun timeIt (f,n) =
let

val start = Time.now();
val result = f n;
val stop = Time.now();
val duration = Time.-(stop, start);

in
(Time.toMicroseconds duration, result)

end;

The Fibonacci function provides another example. Here is the mathematical defini-
tion.

F(0) = 0, F(1) = 1, and F(n) = F(n � 1) + F(n � 2) for 1 < n.

The direct translation into SML creates a function that makes exponentially many
recursive calls. We can improve it by carrying along two values. Consider a function
G satisfying G(n) = (F(n), F(n � 1)). Then we can compute G(n + 1) as (F(n) +
F(n � 1), F(n)), yielding a recursive function.

local
fun increment (u,v) = (u+v,u);
fun g 0 = (0, 1)

| g k = increment (g (k-1));
in

fun fib k = #1(g k);
end;

Our new function g makes only k recursive calls, a major improvement! (There is,
however, a closed formula that computes the Fibonacci function. Using it, we need
only one function call. The point here is that we often can reduce the number of
function calls, even when there is no elegant mathematical shortcut.)

12.2 Avoiding Expensive Constructions

We can go a little further in optimizing our calculation of Fibonacci numbers. Think
of the function g as operating on a triple containing the current value of k, u, and v.
E↵ectively, we are applying the increment function k times and using the triple as
an accumulator.

local
fun g(k,u,v) = if k=0

then u

66

else g(k-1,u+v,u);
in

fun fib k = g(k,0,1);
end;

We have not further reduced the number of function calls, but we have given the
SML system a way to reduce the overhead of those calls. The crucial property of our
function g is that it is tail recursive. That means that the recursive call is the very last
function to be applied. It allows the SML system to convert recursion into iteration.
The process can be described as “keep modifying the triple until you are finished,
and then return the second component.” Many, but not all, recursive functions can
be written in the tail recursive fashion.

Another feature of our function g is that it is uncurried. While currying is elegant,
useful, and often essential, it does come with a bit of overhead. The SML system
must create functions, and not simpler values, as intermediate steps.

When a function is called only a few times, there is little need to worry about the
overhead of function calls. In a few rare cases, when the number of calls rises, we
can profitably resort to the techniques outlined here. In subsequent courses you will
learn more powerful techniques for improving e�ciency.

Practice Problem 47. Write a tail recursive version of the factorial function.

Practice Problem 48. Our first examples of numerical recursion in Section 6 were
the functions add, sub, and mul defined in terms of the more primitive functions
pred and succ. Give tail recursive versions of add, sub, and mul.

Practice Problem 49. Write a list-reversing function using functions that are tail
recursive and uncurried. Start with the discussion at the end of Section 4.

Practice Problem 50. Is foldr, as we described it in Section 11.5, tail recursive?
What about foldl?

13 Adventures in Arithmetic: Bits

A value in a computer’s memory is simply a string of zeroes and ones—a list of bits.
One way to interpret a value in memory is to view it as the binary representation of
a natural number.

Consider the elementary school algorithm for addition. It is even easier in binary.
Here is a partially-completed addition.

67

1 1
10011

+ 1001
00

In the rightmost column, we added 1 and 1 to obtain a result of 0 and a carry of 1.
Then, in the next column, we added 1, 0, and the carry from the previous column to
obtain a result of 1 and a carry of 1. The process continues from right to left. The
next result bit will be 1, and the carry will be 0.

Using our type bit from the Section 10, let us define a type for representations of
the natural numbers.

datatype bit = Zero | One;
type natnum = bit list;

A value of type natnum is simply a list of bits. When we interpret it as a binary rep-
resentation, it is convenient to consider the first element to the the least significant
bit. The practice may seem backwards at first, because we read lists starting from
left, and we read numbers with the high-order digit on the left. The reason is that
we usually start with the low-order bit, and we want the corresponding bits to “line
up.” Think about the addition example, above.

We first write a function for single-bit addition. The argument is a triple consisting
of the carry-in bit and the two bits to be added. The result is a pair consisting of the
sum bit and the carry-out bit.

fun bitadd (Zero, Zero, v) = (v, Zero)
| bitadd (Zero, One, Zero) = (One, Zero)
| bitadd (One, Zero, Zero) = (One, Zero)
| bitadd (One, One, One) = (One, One)
| bitadd (_, _, _) = (Zero, One);

We arranged the cases to minimize complexity. The idea is to first consider the cases
in which there are two or more zeroes and then the case of all ones. The remaining
cases all have exactly two ones, and the result is the same for all of them.

The function to add list-based natural numbers follows the usual elementary school
algorithm. We proceed from the low-order bits to the high-order bits, propagating
the carry as we go. To actually add two numbers, we would invoke nnadd with the
first argument being Zero.

fun nnadd Zero nil nil = nil
| nnadd One nil nil = [One]
| nnadd c nil vl = nnadd c [Zero] vl
| nnadd c ul nil = nnadd c ul [Zero]

68

| nnadd c (u::us) (v::vs) =
let

val (sum, carry) = bitadd(c, u, v);
in

sum :: (nnadd carry us vs)
end;

Practice Problem 51. Write bitsub and nnsub. How does one handle potentially
negative results?

Converting between list-based natural numbers and ordinary integers is an exercise
in list and numerical recursion.

fun nnToInt nil = 0
| nnToInt (Zero::us) = nnToInt us * 2
| nnToInt (One::us) = nnToInt us * 2 + 1;

exception NNNegative;
fun intToNn k =

case Int.sign k of
~1 => raise NNNegative

| 0 => nil
| 1 => let

val first = case k mod 2 of
0 => Zero

| _ => One;
val rest = intToNn (k div 2);

in
first :: rest

end;

Practice Problem 52. Write nnToInt in a di↵erent form, using an accumulator.

For multiplication, we again follow the elementary school algorithm. It is easy be-
cause the times table in binary has only two values. When multiplying by a single
bit, we either get zero or the number being multiplied.

fun nnmult nil _ = nil
| nnmult _ nil = nil
| nnmult ul (Zero::vs) = Zero :: (nnmult ul vs)

69

| nnmult ul (One::vs) = nnadd ul (Zero :: (nnmult ul vs));

This code, although correct, is misleading. If we were using a di↵erent representation—
say decimal instead of binary—we would have to multiply ul by a single-digit value
that may not be zero or one. How do we generalize?

Comparisons are a little involved, but they are made easier by the built-in type
order. There are three values, LESS, EQUAL, and GREATER in type order. We be-
gin with a function compare. The idea is to start out assuming that the two values
are equal and read the list from right to left. At each step, we compare two bits and
pass the result on to the next step.

fun compare t nil nil = t
| compare t (Zero::us) nil = compare t us nil
| compare _ (One::us) nil = GREATER
| compare t nil (Zero::vs) = compare t nil vs
| compare _ nil (One::vs) = LESS
| compare t (Zero::us) (Zero::vs) = compare t us vs
| compare t (Zero::us) (One::vs) = compare LESS us vs
| compare t (One::us) (Zero::vs) = compare GREATER us vs
| compare t (One::us) (One::vs) = compare t us vs

Having compare, we can easily write the more natural comparison functions.

fun nnless u v = compare EQUAL u v = LESS;
fun nnleq u v = compare EQUAL u v <> GREATER;

The other comparison functions, nnequal, nnneq, nngreater, and nngeq are de-
clared in a similar fashion.

We are now ready to turn to division. Long division is relatively easy in binary be-
cause there are only two possible quotient bits. Consider long division as a recursive
process, where the recursion is done on the dividend, otherwise known as the nu-
merator. To divide the dividend n::ns, we obtain a quotient q and remainder r for
the recursive case for the dividend ns. There are two cases as we try to divide the
divisor d into n::r.

• If d <= n::r, then the new quotient bit is One and the new remainder is nnsub
(n::r) d.

• If n::r < d, then the new quotient bit is Zero and the new remainder is n::r.

These considerations guide us in writing nnquorem, which returns a pair composed
of the quotient and the remainder.

fun nnquorem nil d = (nil,nil)
| nnquorem (n::ns) d =

70

let
val (rquo, rrem) = nnquorem ns d;

in
if nnless (n::rrem) d

then (Zero::rquo, n::rrem)
else (One::rquo, nnsub (n::rrem) d)

end;

Practice Problem 53. Shifting is a common operation on binary quantities. A left
shift adds zeroes on the least significant end of the bits. (“Left” refers to the usual
way we read numbers, with the least significant bits on the right.) From the point
of view of natural numbers, adding a zero corresponds to multiplying by two, just
as adding a zero to a decimal number corresponds to multiplying by ten. Write a
function leftShift that takes a non-negative integer k and a list of bits and shifts
the bits left by k. What ambiguities are there in the specification of leftShift?

Practice Problem 54. An arithmetic right shift by k adds k copies of the most sig-
nificant bit to the most significant end. Write a function rightShift.

14 Adventures in Arithmetic: Digits

In the previous section, we carried out arithmetic using the binary representation.
We now develop a version for the decimal representation, with an eye toward ex-
tending our methods to other bases.

A decimal number is a list of digits, starting with the least significant one. A digit,
of course, is an integral value between 0 and 9. We could define an SML datatype for
digits, just as we did for bits, but it ends up being too cumbersome. The function
digitAdd, for example, would have one hundred cases. Instead, we take a short
cut and use ordinary integers for digits and rely on the computer’s arithmetic for
operations on digits. We must, without help from SML’s type system, insure that our
lists contain only values between 0 and 9.

The function for decimal addition is a direct generalization of the one for binary.

fun digitadd (c, u, v) = let
val total = c + u + v;

in
(total mod 10, total div 10)

end;
fun decadd 0 nil nil = nil

71

| decadd c nil nil = [c]
| decadd c nil vl = decadd c [Zero] vl
| decadd c ul nil = decadd c ul [Zero]
| decadd c (u::us) (v::vs) =

let
val (sum, carry) = digitadd(c, u, v);

in
sum :: (decadd carry us vs)

end;

Practice Problem 55. Write digitSub and decsub.

Practice Problem 56. Write the conversion functions intToDec and decToInt.

As mentioned earlier, multiplication becomes a little more di�cult when we leave
binary representations. We must consider multiplying by a single-digit that is not
zero or one. There are three functions. The first multiplies two single digits (and
adds a carry digit), the second multiplies a single digit across a list (and propagates
a carry digit), and the third collects the results of the list and single-digit products.
Notice that the recursion in the second function is done on the lefthand argument,
while the recursion in the third function is done on the righthand argument.

fun digitmul (c, u, v) = let
val prod = c + u * v;

in
(prod mod 10, prod div 10)

end;

fun decmulAux c nil dig = if c = 0 then nil else [c]
| decmulAux c (u::us) dig =

let
val (prod, carry) = digitmul(c, u, dig);

in
prod :: (decmulAux carry, us, dig)

end;

fun decmul _ nil = nil
| decmul ul (v::vs) =

let
val partialprod = decmulAux c ul v;

in

72

decdd (decmulAux 0 ul v) (0 :: (decmul ul vs))
end;

Except for division, which is covered in the next section, we have all the arithmetic
functions for natural numbers represented as lists of digits, it is straightforward to
generalize the operations to other representations. One commonly used represen-
tation in computer science is hexadecimal, base 16. The “digits” are the numbers 0
through 15, which are usually written as 0 through 9 followed by A through F .

Practice Problem 57. Write comparison functions for decimal representations. You
may use the built-in function Int.compare to compare single digits.

Practice Problem 58. Write the hexadecimal functions hexadd, hexsub, intToHex,
hexToInt, hexCompare, and hexmul.

One advantage of using lists to represent integers is that we avoid an upper bound
on integers. In SML, the largest available int is 230 � 1 = 1073741823. In Java, it is
231 � 1 = 2147483647. While those values may seem large, modern cryptography
requires integers that are much larger. During the course, we will develop a program
that represents integers using a base of 228.

15 Adventures in Arithmetic: Long Division

In this section, we spend some time translating the elementary school algorithm for
long division to our representation of natural numbers as lists of digits. In contrast
to the division function in Section 9 which used iterated subtraction, the method
here is more e�cient and closer to the one that computers actually use.

You probably did not recognize it in elementary school, but the method of long
division is recursive. Consider the following partially-completed calculation.

015
34 5214

34
181
170

11

At this point, we have divided 34 into 521, obtaining a quotient of 15 and a re-
mainder of 11. It has taken us three cycles to get here, one for each digit in the
quotient—including the leading 0. In the next cycle, we will append the digit 4 to

73

the remainder to obtain 114 and divide that number by 34. That process will give
us a new digit in the quotient and a new remainder.

We know that the next digit in our example is 3 and the new remainder is 12, but
let us take some time to think about how we obtain those values. We will talk about
dividing the divisor into the dividend and obtain a quotient and a remainder. In
our example above, we have divided 34 into 521 to obtain a quotient of 015 and a
remainder of 11. The process is to append the next digit 4 of the dividend to the
remainder 11, obtaining 114. We then divide 34 into 114 to obtain the next digit 3
of the quotient and the new remainder of 12.

0153
34 5214

. . .

114
102

12

When we divide 114 by 34 and discover that the new digit is 3, the new remainder
is given by

114 � 3 ⇥ 34 = 12.

More generally, the current-dividend is obtained by appending the digit 4 to the
current remainder of 11. If the next digit is d, then the new remainder is

remainder = current-dividend � d ⇥ divisor.

The digit d is chosen to be as large as possible while the remainder is still non-
negative. In other words, we want to find the largest digit d with the property that

divisor ⇥ d current-dividend.

The new remainder can be computed with just a multiplication and a subtraction.
The hard part is finding the new digit in the quotient. Let us leave that problem aside
for a moment and fit the rest into our list based structure. We are doing induction
on the dividend, represented as a list. As previously, our function returns a pair
with the quotient and the remainder.

fun decquorem nil dl = (nil, nil)
| decquorem (n::ns) dl =

let
val (ql, rl) = decquorem ns dl;
val qd = newQuotientDigit (n::rl) dl;
val newr = decsub (n::rl) (decmul dl [qd]);

in

74

(qd::ql, newr)
end;

Before reading further, be sure that you understand the connection between the long
division example and the SML code.

Now, what about newQuotientDigit? We know that d is a single digit. Our choices
are 0 through 9, so it would not be terrible if we just tried all ten values. But because
we want to apply our technique to representations other than decimal, we adopt a
more general approach—binary search. The idea is that we start out knowing that
our desired digit is at least 0 and less than 10. We take the midpoint 5 of those two
values and see if the desired digit is either at least 0 and less than 5, or else at least
5 and less than 10. We have then cut the number of possibilities in half, and we can
repeat the process until we have zeroed in on the answer.

Suppose that we know that the desired digit d satisfies low d < high, and that
mid = (low + high) div 2. Then,

• if divisor ⇥ mid current-dividend, then mid d < high, and

• if divisor ⇥ mid > current-dividend, then low d < mid.

With all this preparation, it is not di�cult to translate our reasoning into SML code.

fun newQuotientDigit low high dl nl =
if low + 1 = high

then low
else let

val mid = (low + high) div 2;
in

if decleq (decmul dl [mid]) nl
then newQuotientDigit mid high dl nl
else newQuotientDigit low mid dl nl

end;

The function newQuotientDigit is recursive on the value high�low. We know that
low high always holds, and when 1 < high�low, we know that low < mid < high.
(Why?) This verifies that our recursive calls are always made on a simpler case. The
base case occurs when high � low = 1 and there is only one possible value.

Our division function has to be modified a tiny bit because the function newQuo-
tientDigit must carry along the values low and high.

fun decquorem nil dl = (nil, nil)
| decquorem (n::ns) dl =

let

75

val (ql, rl) = decquorem ns dl;
val qd = newQuotientDigit 0 10 (n::rl) dl;
val newr = decsub (n::rl) (decmul dl [qd]);

in
(qd::ql, newr)

end;

Practice Problem 59. Explain how we know that the result of newQuotientDigit is
always a single digit.

Practice Problem 60. The hexadecimal representation uses base 16. The “digits”
are 0 through 9, followed by A through F . Write the function hexquorem.

16 Lazy Datatypes

SML is an eager language, in the sense that it evaluates all the arguments to a func-
tion before evaluating the function itself. In some cases, an argument may not be
necessary and the time spend evaluating it is wasted. This section discusses a tech-
nique to delay computation until a value is needed. (Actually, SML has sophisticated
facilities for creating lazy datatypes and functions. The simple explanation here is
designed to convey the general idea. See Practice Problem 65 for a pointer to the
“industrial strength laziness” built into our implementation of SML.)

The basic idea is that instead of creating a value, we construct a function that com-
putes the argument and invoke the function only when necessary. The domain of
the function is the one-element type unit.

Lists are among the simplest structures in SML, so we look at a lazy version of lists.
If lists were not already present in SML, here is how we might add them.

exception ListEmpty;

datatype ’a list = Nil | Cons of ’a * ’a list;

fun first Nil = raise ListEmpty
| first (Cons(x,_)) = x;

fun rest Nil = raise ListEmpty
| rest (Cons(_,xs)) = xs;

76

Notice that we do not have to define a function cons for constructing lists; it comes
along with the datatype. The word Cons (with an uppercase C) is a constructor for
the datatype and can be used in pattern-matching.

For our lazy lists, we want to avoid computing the rest of a list until we absolutely
have to, and so we make the “rest” a function whose domain is unit.

exception LazyEmpty;

datatype ’a lazy_list =
LazyNil

| LazyCons of ’a * (unit -> ’a lazy_list);

fun lazyFirst LazyNil = raise LazyEmpty
| lazyFirst (LazyCons(x, _)) = x;

fun lazyRest LazyNil = raise LazyEmpty
| lazyRest (LazyCons(_, xs)) = xs();

Notice that the only real di↵erence, outside of the type declaration, is that we must
evaluate xs in rest. We could, if we wanted, make the “first” element of the list lazy
as well, but the biggest gain comes from being able to avoid computing elements
in a long list. If we wanted to be exquisitely lazy, we could even make the entire
structure lazy—not just its components.

Here is an example of a lazy list. It is the list of natural numbers—all of them!
Because we can wait to compute the “rest of the list,” we can have infinitely long
lists.

fun natRest k () = LazyCons(k, natRest(k + 1));
val naturals = natRest 0 ();

All of the familiar list functions have lazy analogs. For example, we can create a lazy
version of map.

fun lazyMap _ LazyNil = LazyNil
| lazyMap f (LazyCons(x, xs)) = LazyCons(f x, ???);

The only question is how to handle the “rest” part of the result, indicated above with
question marks. In analogy with the normal map, we would write

lazyMap f xs

but xs is a function and not a lazy list. We could make it a lazy list by evaluating it

lazyMap f (xs())

77

but that would defeat the purpose of laziness. It would also give us a problem with
the type of the second argument to LazyCons, which must be a function. Our third
try is to make it a function.

fn () => lazyMap f (xs())

That works, and we notice that the result is simply the composition of the two
functions lazyMap f and xs. Here is our final version of lazyMap.

fun lazyMap _ LazyNil = LazyNil
| lazyMap f (LazyCons(x, xs)) =

LazyCons(f x, (lazyMap f) o xs);

We apply the same reasoning to filter and obtain a lazy version of that function.

fun lazyFilter _ LazyNil = LazyNil
| lazyFilter pred (LazyCons(x, xs)) =

if pred x
then LazyCons(x, (lazyFilter pred) o xs)
else lazyFilter pred (xs());

Notice that when pred x is false, we are forced to evaluate xs. With lazyFilter,
we run the risk that we will never find an element for which the predicate is true,
and the function will run forever. Laziness has its costs!

Here are some functions that convert lazy lists to ordinary ones. The first may run
forever, so we introduce the second one with an explicit bound on the number of
elements.

fun lazyToList LazyNil = nil
| lazyToList (LazyCons(x, xs)) = x::(lazyToList(xs()));

fun lazyFirstN _ LazyNil = nil
| lazyFirstN n (LazyCons(x, xs)) =

if n <= 0
then nil
else x::(lazyFirstN (n-1) (xs()));

Practice Problem 61. Write an expression for the (infinite) lazy list of Fibonacci
numbers.

The sieve of Eratosthenes provides an illuminating example. One creates a list of
primes by starting with a list of all the natural numbers from 2 on out. We mark
each element of the list as a prime by circling it or as a non-prime by crossing it

78

out. At each stage, the first unmarked number on the list is a prime; we circle it.
Then, we cross out all the multiples of that number, for they are not primes. Starting
with a lazy list of numbers from 2, we use a filter-like construction to remove the
multiples.

fun natRest k () = LazyCons(k, natRest(k + 1));

fun notMult u v = v mod u <> 0;

fun sieve LazyNil = LazyNil
| sieve (LazyCons(u,us)) =

LazyCons(u, fn () => sieve (lazyFilter (notMult u) (us())));

val primes = sieve (natRest 2 ());

The sieve example shows the power of lazy lists, but from a practical point of view,
it is ine�cient because of the way the filter functions stack up. It runs surprisingly
fast at first but then slows down. In one trial, it got all the primes up through one
million in less than ten minutes but then took over four hours to get the primes
through five million.

Practice Problem 62. Write an SML function listTolazy that converts ordinary
lists to lazy lists.

Practice Problem 63. The Newton-Raphson method for computing the square root
of a starts with the approximation x0 = 1.0. It improves an approximation xn
by computing xn+1 = (xn/a + xn)/2.0. The method stops with value xn when
|xn � xn�1| is less than some preset tolerance.

a. Declare an SML function iterate that has the type signature

(’a -> ’a) -> ’a -> ’a lazy_list

and creates the lazy list corresponding to the sequence x, f (x), f (f (x)),

b. Declare an SML function inTolerance that takes a real value epsilon and a lazy
list corresponding to the sequence x0, x1, x2, . . . , and returns the first element xn
satisfying |xn � xn�1| < epsilon.

c. Using iterate and inTolerance, define a function that takes two reals, epsilon
and a, and produces the square root of a to within tolerance epsilon.

Practice Problem 64. Students in calculus courses learn that the exponential func-
tion can be approximated with Taylor’s series.

ex = 1.0
0!

+ x
1!

+ x2

2!
+ . . . + xn

n!
+ . . .

79

a. Declare a function that takes a value x and creates a lazy list of the individual
terms in the series.

b. Declare another function that takes a lazy list of terms and produces a lazy list
of partial sums of the series.

c. Declare a function that computes the exponential function to within a given tol-
erance. Use the toTolerance function from the previous problem.

Practice Problem 65. Read about the lazy extension to Standard ML of New Jer-
sey in Chapter 15 of Harper’s book, Programming in Standard ML. Translate the
examples of this section into that framework.

17 Mutual Recursion

In SML, an identifier must be declared before it is used. That makes it di�cult to
define two functions which rely on each other.

Consider, for example, the problem of writing two functions take and skip.3 The
function take operates on a list and returns a list containing every other element
of the given list, starting with the first. The function skip returns the elements that
take omits; that is, skip returns a list with every other element, starting with the
second. It is natural to want to declare them simultaneously.

fun take nil = nil
| take (x::xs) = x :: (skip xs);

fun skip nil = nil
| skip (x::xs) = take xs;

But these declarations will lead to an “unbound variable” error because skip is used
in take before it is declared. Reversing the order of the two functions does not help.

Fortunately, the designers of SML have given us a way out of the predicament. The
keyword and allows the declarations to be made at the same time. (Do not confuse
and with the boolean connective andalso.) The following example is one declaration
of two functions. Notice that there is only one semicolon.

fun take nil = nil
| take (x::xs) = x :: (skip xs)

and skip nil = nil
| skip (x::xs) = take xs;

3This example is taken from Ullman, Elements of ML Programming, second edition, pages 60–61.

80

http://www.cs.cmu.edu/~rwh/smlbook/book.pdf

Mutually recursive functions (and datatypes; SML allows those too!) are common in
computer science. Most grammars that describe the syntactic structure of program-
ming languages give rise to mutually recursive functions. We shall see an example
toward the end of the course.

Practice Problem 66. There is another way to solve the take-skip problem, without
using mutual recursion. What is it?

Practice Problem 67. Declare the predicates even and odd in a mutually recursive
fashion.

Practice Problem 68. In Gödel, Escher, Bach: An Eternal Golden Braid, Douglas Hof-
stadter presents female and male sequences, defined mathematically on the natural
numbers as follows.

F(0) = 1 and F(n) = n � M(F(n � 1))
M(0) = 0 and M(n) = n � F(M(n � 1))

Write mutually recursive SML functions to compute the two functions.

81

	Introduction
	Part I Using the SML System
	1 Obtaining an Account
	2 Your First Session
	3 Subsequent Sessions
	4 SML Messages

	Part II The SML Language
	1 Data Types
	2 Constructing New Types
	3 Expressions and Values
	4 Information Hiding
	5 More on Functions
	6 The Basis Library
	7 Exceptions and Options
	8 More on Patterns
	9 More on Expressions

	Part III An SML Style Guide
	1 Absolutes
	2 General Points
	3 Comments
	4 Names
	5 Indentation
	6 Parentheses
	7 Pattern Matching
	8 Verbosity and let Expressions
	9 Verbosity and Booleans

	Part IV Idioms and Examples
	1 Getting Started
	2 Curried Functions
	3 Lists
	4 List Recursion
	5 The Three Rules of Recursion
	6 Numerical Recursion
	7 List Recursion Revisited
	8 An Aside: When Not to Use Recursion
	9 Numerical Recursion Revisited: Division
	10 Types
	11 Functional Programming and List Recursion
	12 An Aside: Efficiency
	13 Adventures in Arithmetic: Bits
	14 Adventures in Arithmetic: Digits
	15 Adventures in Arithmetic: Long Division
	16 Lazy Datatypes
	17 Mutual Recursion

