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The CS52 Machine is a rudimentary model of a computer, used to understand how
real computers operate at a low-level. We will use it to study how data are stored,
how programs are executed, and—most importantly—how recursion is implemented
at the machine level.

We begin in Section Section 1 with a description of the machine and its operation.
Then in Section Section 2, we describe the assembly language and see how programs
are run. After reading this material, you will be able to write programs in the CS52
Machine assembly language and run them on the simulator. See Appendix A if you
need help using the simulator.

Sections Section 3 and Section 4 are reference manuals for the assembly language
and the underlying machine language, respectively. They may be skipped on first
reading but are likely to be valuable as you gain more experience writing programs.

All of the ideas in the CS52 Machine are present in modern computers. In Sec-
tion Section 5 we compare the CS52 Machine with real computers to see what is
missing from our model.

The appendices contain documentation for the simulator for our model, some sam-
ple programs, historical remarks, practice exercises, and a quick reference sheet for
the assembly language.
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1 The CS52 Machine Architecture

The fundamental data type of the CS52 Machine is the 16-bit word, two bytes. As
unsigned integers, these words take on values between 0 and 216�1. See Appendix B
for a refresher on binary representation of integers.

The CS52 Machine consists of a memory and five registers. There is a set of in-
structions that modify the values in memory and registers. A program is simply a
sequence of instructions. Figure 1 shows a block diagram of the components of the
CS52 Machine.

1.1 Memory

The memory is an array of bytes. Each index into the array is itself a word, inter-
preted as an unsigned value. An index into the memory array is called an address
or a location. The number of bytes in a memory can vary, but it can never be larger
than 216 bytes. In our work, the memory will be much smaller.

Even though memory is indexed by bytes, the size of a transaction with memory is
the word. The word at address addr is formed by taking the low order byte from
address addr and the high order byte from address addr�1. Normally our addresses
are even numbers, so we can think of memory as an array of words whose addresses
are even. (However, we also permit odd addresses and speak of the two-byte word
beginning at that address.) We use the notation mem�addr� to refer to the word at
address addr. Consecutive words in memory have addresses that differ by two.

The word values in memory can be used and changed. We load a value from a mem-
ory address in order to use it, and we store a new value at a memory address. The
word values stored in memory can be interpreted as signed integers, as unsigned
addresses into memory, or as instructions to the CS52 Machine.

Memory location 0 has a special use in the CS52 Machine. Rather than storing a
value, it is the conduit for input and output. By obtaining a value from mem�0� a
program can acquire data from the user. Storing a value at address 0 is the way to
create output. Values for input and output are interpreted and displayed as signed
integers.

1.2 Registers

All of the actual computation takes place in the registers. A register is a component
that holds the value of one word. There are five registers in the CS52 Machine.
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ic 0x001e

r0 0x0000

r1 0x00ba

r2 0x0028

r3 0x0001

0x0000 I/O

0x0002 0x84d0

0x0004 0xd400

0x0006 0xfc00

0x0008 0x8812

0x000a 0xd800

0x000c 0x4a00

0x000e 0xec00

0x0010 0x5000

0x0012 0xe900

0x0014 0x85fe

0x0016 0x2304

0x0018 0x8c01

0x001a 0x0016

0x001c 0xed00

0x001e 0x85fe

0x0020 0x8fff

0x0022 0x8812
...

Figure 1: A block diagram of the CS52 Machine. The registers are on the left, and a
portion of memory is on the right. Register ic has the value 0x001e, and the word
at that address—shown in blue—is the instruction that is about to be executed.
All values are given in hexadecimal.

Register ic is the instruction counter; it holds the address in memory of the next
instruction to be executed.

The other four registers hold data values on which the machine operates. Register
r0 is special in that it always contains the value zero; any attempt to change it is
ignored. The other registers, r1, r2, and r3, are general-purpose registers whose
values can be read and modified by program instructions.

The CS52 Machine itself does not reserve the data registers for any particular pur-
pose. Later, when we encounter subprograms, we will adopt a special convention
for the use of the register r1.

1.3 Instructions

An instruction to the CS52 Machine is a tiny step of a computation; it may change a
value in a register or at a memory location.

From the CS52 Machine’s point of view, instructions are simply sixteen-bit quan-
tities. Later, we shall see exactly how these instructions are encoded as words in
memory. As human beings, we usually write instructions in a more understand-
able way, using the CS52 Machine assembly language. Each instruction consists of a
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three-letter abbreviation followed by up to four arguments, which may be registers
or numerical values. For example, the instruction

add r3 r2 r2

causes the machine to add the value in r2 to itself and place the result in r3.
The convention, consistent with assignment statements in other programming lan-
guages, is that the leftmost register is always the one that receives the new value.
Similarly,

loa r3 r1

causes the machine to use the value in r1 as an address and to place the value at
that address in memory into r3.

The arguments in an instruction can be registers, numerical values, or labels refer-
ring to locations in the program. In specifying arguments, we use rX to refer to
the (leftmost) destination register, and we use rY and rZ to refer to the other two
register arguments. Only one of the four possible arguments can be a non-register;
if it is present, it must be the last argument. We use arg to refer to a non-register
argument.

An instruction may change the value in a register or in a memory location, but not
both. Each instruction also changes the value in ic, usually by incrementing it by 2
to move on to the next instruction in sequence.

The full assembly language instruction set is described in detail in Section 3 and is
summarized in a single page in Appendix F.

1.4 Programs

A program is simply a sequence of instructions stored in a block of contiguous
words in the machine’s memory. In executing a program, the CS52 Machine follows
a simple loop:

� The machine fetches the value at mem�ic� for use as an instruction.
� The machine increments the value in ic by 2.
� The machine decodes and carries out the instruction.

Figure 2 shows one iteration of the loop as the CS52 Machine executes a program.
The loop continues until a hlt instruction is executed or some error occurs.

Notice that, while an instruction is being executed, the value in ic is the address of
the next instruction. We will see that this detail is important when we look at the
branch instructions.
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ic 0x001e

r0 0x0000

r1 0x00ba

r2 0x0028

r3 0x0001

.

.

.

0x0008 0x8812

0x000a 0xd800

0x000c 0x4a00

0x000e 0xec00

0x0010 0x5000

0x0012 0xe900

0x0014 0x85fe

0x0016 0x2304

0x0018 0x8c01

0x001a 0x0016

0x001c 0xed00

0x001e 0x85fe

0x0020 0x8fff

0x0022 0x8812
.
.
.

ic 0x0020

r0 0x0000

r1 0x00b8

r2 0x0028

r3 0x0001

.

.

.

0x0008 0x8812

0x000a 0xd800

0x000c 0x4a00

0x000e 0xec00

0x0010 0x5000

0x0012 0xe900

0x0014 0x85fe

0x0016 0x2304

0x0018 0x8c01

0x001a 0x0016

0x001c 0xed00

0x001e 0x85fe

0x0020 0x8fff

0x0022 0x8812
.
.
.

Figure 2: On the left is the configuration of the CS52 Machine shown in Fig-
ure 1. The instruction in blue is about to be executed. As an instruction, the
value 0x85f3 means “change the value in r1 by subtracting 2.” On the right is
the configuration after that single instruction is executed. Notice that the only
changes are to the values in registers ic and r1. The next instruction will come
from memory address 0x0020.

At this low “machine” level, there is no type checking. A word is simply a 16-bit
quantity that may be interpreted as a data value that is a signed integer, as an
unsigned address into memory, or as an instruction to be executed.

The CS52 Machine will halt and report an error if it tries to use an address that
is is too large for the actual memory. Similarly, it will halt and report an error if
a word that is to be interpreted as an instruction is not a legitimate instruction.
There are other errors from which the CS52 Machine offers no hardware protection.
For example, there is no simple way to test for arithmetic overflow, and there is
no way to prevent data from being interpreted as instructions, or vice versa. The
programmer must therefore be very careful to insure that values are used properly.

5



2 CS52 Machine Programming

In the olden days, programmers computed each bit of each instruction. They entered
the instructions by hand, using plug boards or toggle switches. As you can imagine,
the process was tedious and error-prone. They quickly realized that computers were
more reliable for that kind of work and developed programs to do the intricate work
with bits.

You will be writing programs in the CS52 Machine’s assembly language, using ab-
breviations like add and loa which we have just seen. There is a program called
an assembler that translates the assembly language program into a sequence of 16-
bit instructions that can be executed on the CS52 Machine itself. For example, the
assembler will translate the assembly language instruction

add r1 r1 -2

into the machine instruction 0x85fe that we saw in Figure 2.

In this section we give some informal descriptions of the assembly language instruc-
tions and show how they can be combined into programs. A more formal description
of the assembly language can be found in the next section.

Our approach is bottom-up. We begin with basic programming constructs like as-
signment statements, loops, and if-then-else statements. In the first few examples
we will use all three non-zero registers. Later, when we move to subprograms, we
will have to adopt a convention that reserves r1 for a specific use. Life will get a
little more complicated with only two registers available for data values.

2.1 Assignment Statements

As you well know, the assignment statement

k = k + 1;

fetches the value of the variable k, adds 1 to it, and stores the result back in the
variable k. The value of the variable k is stored in memory at a known address.
Assuming that the address for k is in register r2, we may execute the following
block of code to increment its value.

loa r3 r2 ; put the value of k in r3

add r3 r3 1 ; add 1 to it

sto r3 r2 ; store the new value back into k

These three instructions exactly reflect our understanding of the assignment state-
ment. It is not hard to imagine more complicated assignments in which the values
of several variables are used to update another variable.
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There are a few details about the assembly language syntax that should be men-
tioned here. There is one instruction to a line. The semicolon is the comment
character—it and everything following it is ignored by the assembler. Because as-
sembly instructions are so cryptic, programmers comment nearly every line of code,
as we have done above.

It is not obvious from the example above, but every instruction must be indented
away from the left margin. There must be at least one blank space (we usually
use several) between the left margin and the beginning of the actual instruction. A
word that begins at the left margin is interpreted by the assembler as a label, not an
instruction. We shall see examples of labels shortly.

2.2 Straight-line Code

A very simple example of a whole program is one that accepts two integers and
prints their difference. It has only five executable instructions: read, read, subtract,
write, and halt.

loa r2 r0 ; get the first value

loa r3 r0 ; get the second value

sub r2 r2 r3 ; compute the difference

sto r2 r0 ; write the result

hlt ; quit

Notice that we have used register r0 as the second register for loa and sto. Re-
member that the value of r0 is always zero, and that the memory at address zero is
used for input and output. Therefore, loading from address zero gets a value from
the user, and storing a value at address zero writes the result for the user to see.

The five lines above form a complete program. Normally, a program has a (some-
times lengthy) preamble containing comments indicating who wrote the program,
when, why, and how. The complete program appears among the example programs
as subtract.a52.

2.3 While-loops

Suppose that we want to multiply two numbers instead of subtracting them. The
CS52 Machine has no multiply instruction, so we resort to repeated addition. (Warn-
ing: This is not how real computers multiply! The example gives us a clean and sim-
ple illustration of a loop, but no real computer—or real programmer—would ever
do anything so inefficient. Later, we will see a much faster multiplication method.)
Starting with non-negative numbers a and b, we want to initialize a value result to
zero and then add b to it a times.
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result = 0;

while (0 < a) {

result += b;

a--;

}

As you know, the while-loop starts by making its test (0 < a, in this case). If the test
result is true, the body of the loop is executed and the program returns to the top of
the loop for another test. If the test result is false, the body of the loop is skipped
and the computation proceeds with the code after the loop.

We use labels to indicate positions in the code, and branch instructions to control
the location of the next instruction. The instruction brs is the unconditional branch;
it causes the next instruction to come from a location specified by the label. The
instruction ble is a conditional branch; it makes a comparison to determine the
location of the next instruction. If the comparison is true (the value in the first
register being less-than-or-equal-to the value in the second, in the case of ble), the
next instruction comes from the location specified by the label. If the comparison is
false, computation simply proceeds to the instruction following the branch.

Let us use r1 for a, r2 for b, and r3 for result. Notice how faithfully the assembly
language code below follows the while-loop.

mov r3 r0 ; result = 0;

loop

ble r1 r0 endloop ; stop if a <= 0

add r3 r3 r2 ; result += b;

sub r1 r1 1 ; a--;

brs loop ; return for another iteration

endloop

We could package this code with two input commands and an output command and
have a multiply program just like our subtraction program, but there is a further
refinement: Notice that the target of the brs instruction is another (conditional)
branch instruction. Why branch to a conditional branch? Why not make the test
in the first branch? We can change the logic slightly and eliminate one instruction
from the body of the loop.

mov r3 r0 ; result = 0;

ble r1 r0 endloop ; skip the whole loop if a <= 0

loop

add r3 r3 r2 ; result += b;

sub r1 r1 1 ; a--;

blt r0 r1 loop ; return for another iteration,

; if necessary
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endloop

There are still five instructions, but now only three of them are in the body of the
loop. As you have seen from your work with other programming languages, many
programs spend most of their time in loops. If we can cut down the number of
instructions in the body of a loop, we can significantly reduce the running time of
the program. Here, we have reduced the time for one iteration of the loop body by
one-fourth.

The loop above forms the core of the example program multiply.a52 and provides
a template to use for all while-loops.

b?? r? r? endloop ; do we enter the loop?

loop

... ; loop body

b?? r? r? loop ; another iteration

endloop

Obviously, if we have more than one loop in a program, we have to use more imagi-
native names than loop and endloop.

Once we have understood one kind of loop, it is easy to code other sorts of loops.
For example, the for-loop for (a=0; a<b; a++) {...} can be translated into the
while-loop below, and so our technique can accommodate for-loops as well.

a = 0;

while (a < b) {

...

a++;

}

2.4 Conditional Execution

By now, we have seen many of the basic assembly language instructions: the regis-
ter instructions add, sub, and mov; the memory instructions sto and loa; and the
branch instructions like brs and blt. Those instructions, and minor variations of
them, are sufficient to translate all the fundamental steps of a computer program.

The only construction left to consider is the conditional, if-then-else. The basic pat-
tern consists of two blocks of code, only one of which is executed. If the condition
is true, the computer executes the then-part and skips over the else-part. If the con-
dition is false, the computer skips the then-part and executes the else-part. It all can
be carried out with two branches and two labels.
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b?? r? r? else ; branch if condition is false

... ; then-part

brs endif ; skip else-part

else

... ; else-part

endif

For a concrete example, we compute the “sign” of a number.

if (a < 0)

write(-1);

else if (0 < a)

write(+1);

else

write(0);

Suppose that the value a is in r2. We have the following code. Notice that we
branch to the else-part, so that the branch condition is the negation of the one in
the if-statement.

ble r0 r2 elseif ; first comparison

add r3 r0 -1 ; a < 0, place result -1 in r3

sto r3 r0 ; write the value in r3

brs endif ; skip other clauses

elseif

ble r2 r0 else ; second comparison

add r3 r0 1 ; 0 < a, place result +1 in r3

sto r3 r0 ; write the value in r3

brs endif ; skip other clauses

else

sto r0 r0 ; a == 0, write the value zero

endif

The full program appears as sign.a52 in Section C.2.

2.5 Arrays and Nested Loops

The loop template from Section 2.3 can be applied inside itself to obtain nested
loops. The Sieve of Eratosthenes, a classical method for listing prime numbers,
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provides an example of nested loops. The idea is to make a list of numbers from
2 up to some limit. We make several passes across the list. On each pass, the first
number encountered is a prime. We record that number and then remove it and all
its multiples from the list.

We can implement the sieve in Java or C++ with an array called num. The value
num[i] is non-zero or zero, according to whether or not i is still on the list.

for (i = 2; i < limit; i++)

num[i] = i; // initialize to a non-zero value

for (i = 2; i < limit; i++)

if (num[i] != 0) {

write(i);

for (j = i; j <= limit; j += i)

num[j] = 0;

}

In the CS52 Machine, we can represent the array as a contiguous sequence of words
in memory. If num is the address of the base of the sequence, then the value num[i]

is at address num � 2i. Suppose that i is in r3. If the base address num is a small
value, one that can fit in a single signed byte, then we can store a value into num[i]

with just two instructions.

add r2 r3 r3

sto r3 r2 num

Notice how r2 is used as a temporary register to hold 2i. (How would you get the
value of num[i] if the array num were not stored at a small address?)

The first part of our program reserves memory for i and num. We allocate two bytes
for i and 202 bytes for num, thereby creating slots for the numbers 0 through 99.
(Indices 0 and 1 are not used, but it is less confusing to include them.)

i dat 2 ; i

num dat 200 ; an array indexed 0 through 99;

; indices 0 and 1 are not used

The first loop in the sieve is easy to write. We use r3 for i and r1 for the upper
bound (100, in this case).

add r3 r0 2 ; i = 2;

add r1 r0 100 ; limit = 100;

ble r1 r3 enda ; check if done

loopa

sal r2 r3 1 ; double to get word offset
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sto r3 r2 num ; num[i] := i

add r3 r3 1 ; i++;

blt r3 r1 loopa ; go back for another round

enda

The body of this loop has four instructions and uses all three data registers. Can you
find a way to reduce the number of instructions to three and use only two registers?

Let us now look carefully at the structure of the second loop.

for (i = 2; i < limit; i++)

if (num[i] != 0) {

write(i);

for (j = i; j < limit; j += i)

num[j] = 0;

}

Call the outer loop loopb. The body of that loop consists of an if-statement whose
then-part contains another loop, loopc. The structure of the labels is shown below.

; set up outer loop

; conditional branch to endb

loopb

; branch to endif when (num[i] != 0)

; write(i)

; set up inner loop

; conditional branch to endc

loopc

; body of inner loop

; increment j

; conditional branch to loopc

endc

; clean up after inner loop

endif

; increment i

; conditional branch to loopb

endb

The structure of the labels is a little complicated, in part because we have lost the
nested structure of the Java-like code, but it is simpler than it might be because the
else-part is empty. The outer loop has the same structure as loopa above, so we can
copy that pattern.

Our register conventions are (almost) the same. We use r1 for the limit and r3 for
the loop index (either i or j). We use r2 for two purposes: to temporarily store 2j
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and to hold i when it is used as an increment for j. That means we must store i in
memory when it is not being used, and that is why we reserved space for it at the
top of our program. Here us the final version of the second loop.

;;; set up outer loop

add r3 r0 2 ; i = 2

add r1 r0 100 ; limit = 100

ble r1 r3 endb ; conditional branch to endb

loopb

;;; body of outer loop

sal r2 r3 1 ; double to get word offset

loa r2 r2 num ; load num[i]

beq r2 r0 endif ; branch to endif when num[i] == 0

sto r3 r0 ; write(i)

;;; set up inner loop

sto r3 r0 i ; store i temporarily

; we now use r3 for j

ble r1 r3 endc ; conditional branch to endc

loopc

;;; body of inner loop

sal r2 r3 1 ; get address of num[j]

sto r0 r2 num ; make num[j] zero

loa r2 r0 i ; recover i

add r3 r3 r2 ; increment j

blt r3 r1 loopc ; conditional branch to loopc

endc

;;; clean up after inner loop

loa r3 r0 i ; restore i into r3

endif

;;; finish the outer loop

add r3 r3 1 ; increment i

blt r3 r1 loopb ; conditional branch to loopb

endb

Even though none of the steps is hard, the program is intricate. Programming at this
level is a delicate task that requires careful attention. All the pieces are assembled
in the example program sieve.a52.

Read over the block of code above—as many times as are necessary to become com-
fortable with it. As you do, you may see opportunities for improvement. For ex-
ample, by reversing the roles of r2 and r3 in the inner loop, we can eliminate at
least one instruction. Similarly, we can avoid doubling the indices by incrementing
them by two each time. (We did not make either of those changes here because they
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would have made the loop even more enigmatic than it already is. It is always more
important for a program to be correct than to be fast.)

2.6 The Organization of Memory

Until now, we have been focussed on the careful ordering of instructions, and we
have been rather vague (or even sloppy!) about where in memory variables are
stored. We have only three registers, and most programs will have more than three
variables. It is the programmer’s responsibility to decide where in memory the vari-
ables are stored.

Memory in a modern computer is arranged into four basic areas:

� The code consists of the block of memory where the instructions are stored.
On the CS52 Machine, the assembler insists that all the instructions reside in
one contiguous block of memory.

� The data region is where the global data are stored. For most of our programs
on the CS52 Machine, this area will be rather small or non-existent. It may
appear either before or after the code.

� The stack is a region devoted to managing subprogram calls. Subprograms are
also called methods, functions, or procedures. The next few sections focus on
the use of the stack.

� The heap is where dynamic objects are stored. When you use the keyword new

in Java, you are allocating memory on the heap for a new object. The object is
“dynamic” in the sense that memory is allocated as the program runs and is
in use for an indeterminate amount of time. The management of the heap is
rather complicated, and we will not discuss heaps in this course.

The boundaries between the various regions are maintained by the programmer.
The CS52 Machine knows nothing about them. It is possible for a badly written
program to try to execute a word that was intended as data or to use an instruction
word as data. The part of the stack that is in use grows and shrinks as a program
executes, and it is possible that it will outgrow the space allocated for the stack and
overwrite part of the program. You will no doubt encounter such situations as you
write recursive programs.

Just as we use ic to provide a “current location” in the code region, we will adopt
a convention that r1 always contains an address in the stack region. It will be our
“anchor” for data. Our programs will allocate a space in memory for the stack just
after the code region. The stack will grow upward, from high addresses to low.
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2.7 Stacks

In the Sieve of Eratosthenes program, we allocated space to save the variable i when
it could not be held in a register. That method for saving and restoring the value
of a variable is ad hoc and difficult to generalize. Most computer systems save
temporary values on a stack. It is a mechanism that can be generalized to support
subprogram calls.

The Stack as an Abstract Data Type A stack is an data structure that maintains a
collection of elements. For our purposes, the elements may be taken to be words on
the CS52 Machine, but in other contexts, any kind of element could be used.

The name “stack” comes from an analogy with a stack of dishes or cafeteria trays.
Dishes may be placed on the top of the stack or removed from the top of the stack,
but we may not—without disastrous consequence—move dishes that are in the mid-
dle of the stack. All activity occurs at the top of the stack. The object removed is
the one that most recently was added, leading to a discipline that is called LIFO, an
abbreviation for “last-in-first-out.”

A stack is empty when it contains no elements. If a stack is not empty, we may
pop the top element off the stack. The pop operation is considered to be a function
whose value is the element that is removed. In some situations it is convenient to
have a top operation that returns the value of the top element without removing it.
An attempt to pop an element from an empty stack causes an error known as stack
underflow.

Conversely, a push operation places an element on the top of the stack. Usually, an
implementation of a stack will have a bounded capacity, and a push operation that
would cause the capacity to be exceeded is an error known as stack overflow.

As general data structures, stacks can be implemented using arrays or linked lists,
but most processors have some direct hardware assistance for the stacks that sup-
port the execution of subprograms.

The Hardware Stack A stack is at the heart of a running program. A hardware
stack consists of a region of memory reserved for the elements and a designated
register to hold an address. The register has a different name in every architecture;
we will call it sp, for stack pointer. The unit of data for our hardware stack is the
16-bit word.

Paradoxically, most hardware stacks grow from high memory addresses to low, so
that a push operation decreases the stack pointer. A push operation
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1. copies the value from a register to mem�sp�, and then
2. decrements sp by the word size (in our case, by 2).

Analogously, a pop operation

1. increments sp, and then
2. copies the value from mem�sp� to a register.

Here, we have adopted the convention that sp is the location just below the top of
the stack. It is the location where the next element is to go. We could have equally
well set things up so that sp pointed directly to the top of the stack. (How?)

Stack overflow, in the case of the hardware stack, means that the stack grows be-
yond the region of memory that was reserved for it. There is no direct protection
against corrupting data or programs in adjoining memory locations. Similarly, there
is no protection against stack underflow, in which erroneous values will be returned.
A correct program will prevent underflow by invoking the operations in push-pop
pairs.

One use of stacks is to hold intermediate values in arithmetic calculations. For
example, in computing

�a� b�� �c � d�;

the value a � b is computed and pushed onto the stack. Then c � d is computed,
and the value a� b is popped for multiplication.

Another, similar, use is to temporarily store the value from a register. We could
have used that device in the Sieve of Eratosthenes when we had more variables than
registers.

One cost of using a stack is that the stack pointer cannot be used for any other
purpose. We adopt the convention that r1 is the stack pointer, leaving us with only
two general-purpose registers.

Stack Frames One of the most important uses of the hardware stack is to manage
subprograms. When a subprogram is invoked, there are two agents: the caller of
the subprogram, which is suspended while the subprogram is executing, and the
subprogram itself, the callee. When the callee completes its task, the caller resumes
where it left off.

During the course of its execution, a subprogram may call another subprogram. The
calling mechanism obeys a stack discipline. The active subprogram is on top of
the stack, and all the suspended callers are further down. When a subprogram is
finished, it is popped and the new top-of-stack, its caller, becomes active. The LIFO
stack discipline is exactly what we need to keep track of subprograms.
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A stack frame is a block of data on the stack that is used for communication between
the caller and callee. It includes space for the arguments that are passed from the
caller to the callee; the function result, if any, that is passed back from the callee
to the caller; and the address in the caller’s code to which execution should return.
The frame on the top of the stack belongs to the currently-executing subprogram. A
stack frame is also known as an activation record.

There are many variations for maintaining the information in a stack frame. Differ-
ent subprograms may have stack frames of different sizes. It does not matter much
what conventions one adopts, but once the decisions are made, strict adherence to
them is vital. We adopt the following conventions for using registers and the stack
on the CS52 Machine.

� r1 is the stack pointer. A subprogram call should return it with the same
value. (A rare exception occurs when a subprogram returns more than one
value. In that case, there are additional values on the stack.)

� r2 is used for the return address. The caller cannot expect any data in r2 to
be preserved.

� r3 is used to pass the first argument to the callee and to return a value to the
caller. Again, the caller cannot expect its value to be preserved.

� Any arguments beyond the first are pushed onto the stack by the caller, who
is also responsible for removing them from the stack.

Typically, the caller will save the values in r2 and r3, if necessary, by pushing them
onto the stack. It will then put the first argument into r3 and push any additional
arguments onto the stack. It will then place the address of the subprogram in r2

and execute

cal r2 r2

to invoke the subprogram. One effect of the cal instruction is to save the return
address in r2. The first act of the callee will be to save the return address by pushing
it from r2 onto the stack. When it is finished, the subprogram will put the value to
be returned into r3, pop the return address back into r2, and jump back to the
caller.

subprog

psh r2 ; save the return address

... ; compute, and

... ; leave the result in r3

pop r2 ; restore the return address

jmp r2 ; return

If the subprogram has any local variables, space is allocated for them after the re-
turn address is pushed, and they are discarded by the callee just before the return
address is popped.
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Initializing the Stack A program must reserve an area in memory for the stack,
and its very first act must be to initialize the stack pointer r1. Remember that a
stack grows from high locations toward lower ones, so the base of the stack is at the
high end of the stack region. By convention, we put global data region before the
executable code and the stack area after it.

data

dat ?? ; data area, if required

; beginning of executable code

lcw r1 stack ; initial stack pointer

... ; rest of executable code

dat 100 ; stack area, 50 words

stack

end

2.8 Subprograms

The facility to use subprograms is an essential part of any modern programming
language. Subprograms might be called functions, procedures, or subroutines, but
at the hardware level, they all behave in about the same way.

Now that we have a stack, we have the ability to call subprograms. There is, of
course, no reason that the caller and callee have to be different subprograms, and
we illustrate subprogram calls by writing a recursive version of the factorial func-
tion. Following convention, the argument and the result are both passed in r3. If
we forget about the base case of the recursion (only for a moment!), the code is
astonishingly simple.

fact

psh r2 ; save return address

psh r3 ; save argument

sub r3 r3 1 ; decrement argument

lcw r2 fact ; make recursive call

cal r2 r2 ;

lcw r2 mult ; call mult

cal r2 r2 ; one argument is in r3

; and the other is on

; the stack
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pop r0 ; discard saved argument

pop r2 ; restore return address

jmp r2 ; return

Here we are assuming that there is a subprogram mult which does multiplication.
When it is called, one argument to mult—the result of the recursive call—is in r3,
and the other argument is on the top of the stack. When it returns, the result of the
factorial function is already in r3. No movement of data is necessary.

Returning to the base case of the factorial function, we must make the result 1
when the argument is less than 1. It is an easy insertion of an if-then-else construc-
tion, and the completed factorial function appears in context in the sample program
factorial.a52, listed in Section C.4.

Notice that stack operations come in push-pop pairs. That discipline is the key
to using a stack. Always follow the template and be sure that your subprogram
balances pushes and pops.

2.9 Digging More Deeply into the Stack

Often, we are interested in a value that is near, but not at, the top of the stack.
We can gain access to such a value using the optional third argument to the loa

instruction.

loa r2 r1 offset

After the return address has been pushed, an offset of 2 would recover the return
address itself, and an offset of 4 would recover the next word down on the stack,
presumably an argument.

The subprogram mult, used in the factorial example, takes two arguments and uses
them to initialize two local variables. It starts and ends like this:

psh r2 ; save the return address

loa r2 r1 4 ; get argument b

psh r3 ; make a local copy of a

psh r2 ; make a local copy of b

... ; compute, and place the

; result in r3

pop r0 ; discard local b

pop r0 ; discard local a
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pop r2 ; restore return address

jmp r2 ; return

When this subprogram has completed, the argument b is on the top of the stack; the
caller is responsible for removing it.

Within the heart of mult, the product is computed using repeated addition, just as
it was in our earlier example. However, we now have only two registers available
because r1 is reserved for the stack. We keep the result in r3, and we alternate the
use of r2 between a and b. Here is the loop.

loopm

loa r2 r1 2 ; recover b

add r3 r3 r2 ; product += b;

loa r2 r1 4 ; recover a

sub r2 r2 1 ; a--;

sto r2 r1 4 ; store a

blt r0 r2 loopm ; go back for another roundÄ

The sequence involving the decrement of a is common: put the value in a regis-
ter, modify it, and then put it back in memory. We do not have to store b because
its value is not changed. The complete function mult appears in the example pro-
gram factorial.a52, listed in Section C.4. A much better multiplication function
appears in the library mullib.a52, listed in Section C.5.
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3 Assembly Language Reference

After reading the examples and discussion of assembly language programs in the
previous section, you are no doubt familiar with many of the instructions and their
use in programs. This section provides, for reference, an unambiguous description
of the CS52 Machine’s assembly language.

Informally, a CS52 Machine assembly language program is a sequence of lines. Each
line may contain up to three optional components, in order:

� A label. Each label is a string of characters that begins on the left margin, right
at the beginning of the line.

� Whitespace followed by an instruction or directive. Each instruction or direc-
tive consists of a three-letter abbreviation followed by up to four arguments.
There are 35 different instructions and two directives. The number and nature
of the arguments are dependent on the particular instruction and are specified
in Section 3.2.

� A semicolon followed by a comment. The semicolon and everything following
it are ignored by the assembler.

The assembler translates the instructions into a sequence of 16-bit words that can
be executed by the CS52 Machine. See Section 4 for details on the native machine
instructions and how the assembly language instructions are translated.

3.1 Assembly Language Syntax

The formal syntax for the CS52 Machine’s assembly language is presented in Table 1
using Extended Bachus Naur Form (EBNF). An EBNF specification is a formal method
of specifying a substitution closely related to a context-free grammar. We will have
more to say about EBNF later in the course.

For now, it is enough to say that the symbols in brackets, like hlinei, are intended to
be the targets of substitution. One may substitute a symbol on the left side of ::�
with the construction on the right side. On the right,

� j means “or,”
� �: : :� means “optional,” and f: : :g means “repeated zero or more times.”

A few of the substitutions have been omitted. For example, heolni is the end-of-
line symbol, and hwhitespacei is any non-empty sequence of blanks spaces or tab
characters. All the commands in the language are listed in Table 2.

The EBNF syntax tells us quite a bit about the assembly language, but some details
are left out. In particular, the syntax does not tell us how labels are used or exactly
what kinds of arguments a particular command takes.
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hprogrami ::� fhlineiheolnig
hlinei ::� �hlabeli� �hinstructioni� �hwhitespacei� �; hcommenti�
hinstructioni ::� hwhitespaceihcommandi fhwhitespaceihargumentsig
hcommandi ::� nop j hlt j cal j : : :

hargumentsi ::� �hregisteri �hregisteri �hregisteri��� �hargumenti�
hregisteri ::� r0 j r1 j r2 j r3

hargumenti ::� hlabeli j hdecimal numberi j hhex numberi
hlabeli ::� hletteri fhletteri j hdigiti j hunderscoreig
hdecimal numberi ::� �-� hdigiti fhdigitig
hdigiti ::� 0 j 1 j 2 j 3 j 4 j 5 j 6 j 7 j 8 j 9

hhex numberi ::� �-� 0x hhex digiti fhhex digitig
hhex digiti ::� hdigiti j a j b j c j d j e j f

hwhitespacei ::� hblanki fhblankig

Table 1: The EBNF specification for the CS52 Machine’s assembly language.

hcommandi ::� hactioni j hdirectivei
hactioni ::� adc j add j anc j and j ari j beq j bge j bgt j ble j blt

bne j brs j cal j hlt j jmp j lch j lcw j loa j mov j neg

nop j not j orc j orr j pop j psh j sal j sar j sft j sll

slr j sto j sub j xoc j xor

hdirectivei ::� dat j inc

Table 2: A listing of all the commands in the CS52 Machine’s assembly language.
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Labels The label, if it exists on a line, begins in the left column. Although there
is no entry for labels in the EBNF of Table 1, one is not hard to write. A label must
begin with a letter and contain only letters, digits, and underscore characters. The
assembly language is not case-sensitive.

A label that begins in the first column is called the declaration of the label. A label
may be declared only once. A label is an anchor, an abbreviation for the location in
the program where it is declared.

A label may be used as a byte or word argument anywhere in the program. It is
not necessary that declaration come before use. Labels are frequently used with
the branch instructions, in which case the assembler computes the offset from the
current instruction to the location of the label and inserts that offset into the branch
instruction. Another use of a label is as an argument to the lcw instruction: the
location specified by the label is loaded into a register.

The branch instructions and lcw are nearly always used with labels. Other instruc-
tions normally have numerical values for their byte arguments.

Commands and Arguments A command is a three-letter assembly language in-
struction or one of the directives dat or inc. An assembly language command must
be followed by arguments appropriate for that instruction. For example, cal must
be followed by exactly two registers chosen from among r0, r1, r2, and r3; and add

must be followed either by three registers or by two registers and a byte argument.
Byte or word arguments can usually be numeric values or labels, but there are a few
cases in which labels are not allowed. See the next section for details on the actual
arguments taken by each of the commands.

The directive dat reserves space for data; no instructions appear in a data area. The
argument to dat is an integer indicating the number of bytes to reserve. A data area
may be composed of any number of consecutive dat directives, but the data areas
must lie before or after the executable code. A data area may not appear between
actual CS52 Machine instructions.

Comments A semicolon starts a comment that lasts to the end of the line. The
semicolon and the remainder of the line are ignored by the assembler.

3.2 Assembly Instructions

Each CS52 Machine command takes between zero and four arguments, the type of
which are specified by single letters, decoded as follows:
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R register
S signed byte
U unsigned byte
W full word constant
B signed byte, interpreted as an offset from the current position
A 6-bit constant
F string

The numerical quantities may be specified by decimal or hexadecimal constants, or
(usually) by labels denoting locations in the program.

Arithmetic and bitwise logical instructions These instructions are present:

add

sub

and

orr

xor

9>>>>>>>=>>>>>>>;
RRR or RRS

The arguments can be three registers, or two registers and a signed byte argument.
The assembler distinguishes between the two cases and generates the correct ma-
chine instructions. The byte argument, if present, must be a single byte; it can be
specified as a number or a label. It is sign-extended to a full word at execution time.
The operation is done on the second and third arguments, and then stored in the
first argument.

There are three two-register instructions:

mov

neg

not

9>>=>>; RR

The mov instruction simply copies a value from the second register into the first
register. The neg instruction takes a value from the second register and places
its two’s-complement negation in the first register. The not instruction places the
bitwise complement of the value from the second register into the first register.

Shift instructions The CS52 Machine is capable of arithmetic and logical shifts—
either left or right:

sll

slr

sal

sar

9>>>>=>>>>; RRR or RRS
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As in the case of the arithmetic instructions, the shift instructions can take three
registers, or two registers and a byte argument. The third register or byte argument
specifies the shift distance.

The byte argument, if present, must be a number between 0 and 16, inclusive. It
cannot be a label.

If the shift distance comes from a register, any value is allowed. Negative distances
result in shifts in the opposite direction. When the absolute value of the shift dis-
tance is greater than 15, the result will be a word with all zeroes or all ones.

Memory and data-moving instructions These instructions move values back and
forth between registers and memory:

sto

loa

)
RRS

The instructions take two registers and an optional byte argument. The byte argu-
ment defaults to zero when it is not present. An address is computed as the sum
of the second register and the sign-extended byte argument. In the case of sto, the
value in the first register is stored at the address in memory. In the case of loa, the
value at the address in memory is copied into the first register.

The byte argument to sto or loa can be a number or a label; most frequently it is a
number.

There is an instruction that loads a full-word constant into a register:

lcw RW

It takes a single register and a constant. The constant can be a number or a label.
The assembler (usually) expands the instruction into two machine instructions.

We also have the familiar instructions for manipulating the stack:

psh

pop

)
R

The assembler adheres to the CS52 Machine convention of using register r1 as the
stack pointer. The instructions take a single register, the one containing the value
to be pushed or the one receiving the value to be popped. The assembler expands
each of these instructions into two machine instruction.
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Control instructions The CS52 Machine contains these familiar short branch in-
structions:

brs B

beq

bne

blt

bge

bgt

ble

9>>>>>>>>>=>>>>>>>>>;
RRB

The unconditional branch instruction brs takes no register arguments. The others
take two registers whose values are compared to decide whether or not to take the
branch.

All the branch instructions take a signed byte argument. At the machine level, the
argument is an offset from the address of the instruction immediately following the
branch. In assembly language, the argument can be a number or a label. If it is a
number, it is taken as the literal offset. If it is a label, the assembler computes the
offset from the next instruction to the location of the label in the program.

Beware of using numbers as arguments to branch instructions. There are cases in
which the assembler may emit more than one native instruction for a single assem-
bly instruction, so making an accurate count of instructions is difficult. Further, the
count may change as you develop your program.

Branches are intended to move short distances in the program. The signed byte
argument takes values between �128 and 127, the offset must be even, and each
instruction takes two bytes. Hence it is possible to move only 64 instructions back-
ward and 62 bytes forward.

There are two instructions that support subprograms:

cal RR

jmp R

The cal instruction takes two registers: The first is the destination that receives
the “return address,” the location of the instruction immediately following the cal.
The second register is the target of the call; it becomes the location of the next
instruction to be executed by the machine.

The CS52 Machine follows the convention of using register r2 for calling subpro-
grams. Thus, cal r2 r2 simply interchanges the values in r2 and ic.

The jmp instruction takes one register and transfers control to the instruction at the
address specified in the register. It does not save a return address.

There are a few familiar instructions for doing nothing or stopping the computation:

26



nop

hlt A

The instruction nop takes no arguments and does nothing except advance the in-
struction counter. The instruction hlt with no argument or a zero argument causes
the CS52 Machine to halt in a normal error-free state. With a non-zero argument,
hlt causes the CS52 Machine to halt in an error state specified by the argument.
That argument must be a number between 1 and 63 inclusive. See page 30 for a list
of the current conventions for interpreting the error codes.

Machine instructions These instructions are part of the CS52 Machine’s instruc-
tion set:

ari RRRA

adc RRS

anc RRS

orc RRS

xoc RRS

sft RRS

lch RU

The assembler makes good use of them, but it is unlikely that a human will write
them. See the next section for a description of the CS52 Machine’s native language.

Directives There are two directives:

dat W

inc F

The dat directive is used to make space for data. It creates a blank space either
before or after the image of the program in memory. It must have one positive
numerical argument.

The assembler for the CS52 Machine insists that all executable code be in one con-
tinuous block, so a dat directive may not appear in the middle of a program.

The inc directive is used to load instructions from an external file. It allows one
to load routines for operations like multiplication and division from libraries. The
argument to inc must be a string containing only lowercase letters. The assembler
adds the extension .a52 and looks for a file with that name in the same directory as
the original source file.

Libraries may be nested, up to four deep. The number of open files, including the
original source file, can be no greater than four. This limit is a simple, if inelegant,
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way of preventing infinite “include loops.” It is hard to imagine a situation in which
anyone would want to nest files even that deeply. There is no limit—apart from
good judgment—on the number of libraries that can be included sequentially.
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4 Machine Language Reference

A machine-level instruction is a word whose bits encode an atomic action of the
machine. An instruction encodes the specific operation and up to four arguments.
All the arguments, except perhaps the last, are registers. The registers r0 through
r3 are specified with two bits each. There are two instruction formats:

4 2 2 2 6

Format I: opcode rX rY rZ auxcode

4 2 2 8

Format II: opcode rX rY argument

high-order bits  - -! low order bits

The type of instruction, called the opcode, is encoded in the four high-order bits of
the word. There are sixteen possible opcodes: one is unused, and the rest corre-
spond to some of the assembly instructions we have already seen. The remaining
assembly instructions are translated into machine instructions by the assembler.
Not every opcode uses all its fields.

4.1 The Native Instruction Set

Here is a complete list, in opcode order, of all the instructions. It includes the
format of each instruction, the fields used by the instruction, and the restrictions
on the values in the fields.

The branch instructions

beq Format II 0x0 rX rY displacement

bne Format II 0x1 rX rY displacement

blt Format II 0x2 rX rY displacement

bge Format II 0x3 rX rY displacement

Each branch instruction compares the values in the two specified registers. If the
condition (equal, unequal, less-than, greater-or-equal) is satisfied, the displacement
argument is added, as a sign-extended byte, to the instruction counter. Remember
that the instruction counter is the address of the instruction immediately after the
branch instruction.

Because the value in the instruction counter must be even, the displacements are
limited to even values.
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The call instruction

cal Format I 0x4 rX rY 0 0

The call instruction specifies two registers, rX and rY. The current value of the
instruction counter—the return address—is copied into rX, and the value in rY is
copied into the instruction counter. The two registers may be the same, so the
copies must happen simultaneously.

The third register field and the auxcode field must both be zero.

The halt instruction

hlt Format I 0x5 0 0 0 auxcode

The halt instruction stops the computation. All three register fields must be zero.
The auxcode is viewed as a 6-bit unsigned integer, taking values from zero through
63. The CS52 Machine assigns meaning to some of the possible auxcodes:

0x00 normal error-free termination
0x01 unimplemented instruction
0x02 instruction format is illegal
0x03 instruction counter is not even
0x04 memory address is out of bounds
0x05 memory size request is out of bounds
0x06 user input is not a signed number
0x07 machine code file is incorrect
0x20 attempt to divide by zero

All but the last of these errors are raised automatically by the CS52 Machine when
it encounters a problem. The programmer may raise a “divide by zero” error when
a division routine encounters a zero divisor. The programmer is free to use other
auxcode values to signal other kinds of errors.

The arithmetic instruction

ari Format I 0x6 rX rY rZ auxcode

This is the classic three-register instruction that carries out arithmetic and bitwise
logical operations. The values in rY and rZ are combined using the operation speci-
fied by the auxcode. The result is placed in rX. These are the legal auxcode values:
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0x0 addition
0x1 subtraction
0x4 bitwise and
0x5 bitwise or
0x6 bitwise xor
0x8 shift logical left
0x9 shift logical right
0xa shift arithmetic left
0xb shift arithmetic right

The shift instruction

sft Format I 0x7 rX rY 0 auxcode

The shift instruction combines two kinds of shifts, in two directions. The value in
rY is shifted and placed in rX. The two most significant bits of the auxcode specify
the kind of shift:

0b00 logical left
0b01 logical right
0b10 arithmetic left
0b11 arithmetic right

The other four bits of the auxcode determine the shift distance; it is d� 1, where d
is the unsigned value of the four least significant bits of the auxcode. There is no
way to specify a shift distance of zero; the assembler translates a shift of zero into
a mov instruction.

The third register field must be zero.

The constant-argument instructions

adc Format II 0x8 rX rY argument

anc Format II 0x9 rX rY argument

orc Format II 0xa rX rY argument

xoc Format II 0xb rX rY argument

These instructions specify two registers and a signed byte. A value is created by
applying an operation (addition, bitwise and, bitwise or, or bitwise xor) to the value
from rY and the sign-extended byte. That value is placed into rX.
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An illegal instruction

0xc anything

The instruction whose opcode field is 0xc is unused. An attempt to execute it will
result in an “illegal instruction” error.

The high-byte instruction

lch Format II 0xd rX 0 argument

This instruction replaces the most significant byte of rX with the instruction’s byte
argument. The least significant byte of rX is left unchanged. The unused register rY

must be specified as zero. The assembler uses lch in conjunction with adc to create
full word constants.

The second register field must be zero.

The memory instructions

sto Format II 0xe rX rY argument

loa Format II 0xf rX rY argument

These are the instructions that interact with memory. The byte argument is sign-
extended and added to the value in rY to create an address. In the case of sto, the
value in rX is copied to memory at that address. In the case of loa, the value from
memory at that address is placed in rX.

4.2 Translation of Assembly Instructions

The assembler translates its instructions into the native machine language. Here is
a description of the translation, in the same order that the assembly instructions
were described in Section 3.

Arithmetic and bitwise logical instructions The three-register versions of the in-
structions are translated as follows.

add rX rY rZ is translated as ari rX rY rZ 0x0.

sub rX rY rZ is translated as ari rX rY rZ 0x1.

and rX rY rZ is translated as ari rX rY rZ 0x4.

orr rX rY rZ is translated as ari rX rY rZ 0x5.

xor rX rY rZ is translated as ari rX rY rZ 0x6.
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The assembler determines whether it is in the three-register or two-register case.
The two-register-and-constant versions of the instructions are translated as follows.

add rX rY arg is translated as adc rX rY arg.

sub rX rY arg is translated as adc rX rY -arg.

and rX rY arg is translated as anc rX rY arg.

orr rX rY arg is translated as orc rX rY arg.

xor rX rY arg is translated as xoc rX rY arg.

The two-register-without-constant instructions are translated as follows.

mov rX rY is translated as ari rX r0 rY 0x0.

neg rX rY is translated as ari rX r0 rY 0x1.

not rX rY is translated as xoc rX rY 0xff.

Shift instructions The shift instructions can also come in two forms.

sll rX rY rZ is translated as ari rX rY rZ 0x8.

slr rX rY rZ is translated as ari rX rY rZ 0x9.

sal rX rY rZ is translated as ari rX rY rZ 0xa.

sar rX rY rZ is translated as ari rX rY rZ 0xb.

Remember that the constant argument to a shift operation must be a value between
0 and 16 inclusive. A shift by 0 bits does not change a value, so in all four cases it
is translated into a mov operation.

s?? rX rY 0 is translated as ari rX r0 rY 0x0.

When the argument is non-zero, we let 0bdddd be the binary representation of arg�
1.

sll rX rY arg is translated as sft rX rY 0b00dddd.

slr rX rY arg is translated as sft rX rY 0b01dddd.

sal rX rY arg is translated as sft rX rY 0b10dddd.

sar rX rY arg is translated as sft rX rY 0b11dddd.

Memory and data-moving instructions The sto and loa instructions are part of
the native instruction set; they are left unchanged, except that the assembler sup-
plies the default value of zero when the argument is not present.

The push and pop instructions assume that register r1 is the stack pointer. They
are synthetic instructions, in the sense that each one expands into two native instruc-
tions.
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psh rX expands to sto rX r1 0 followed by adc r1 r1 0xfe.

pop rX expands to adc r1 r1 2 followed by loa rX r1 0.

The lcw instruction usually expands into two instructions, one to load the low byte
and then one to load the high byte. The assembler does the computation to split
the argument arg into its low and high bytes. Let low � arg & 0xff and high �
arg >>> 8. By >>> we mean the logical right shift operation.

lcw rX arg expands to adc rX r0 low followed by lch rX high.

When the argument is a constant value in the range of a signed byte, the second
instruction is unnecessary, and the assembler omits it.

Control Instructions When the argument to a branch instruction is a constant, that
constant is taken literally. When it is a label, the signed distance to the label from
the next instruction (the one following the branch) is computed, and that value is
taken as the argument. In the following specifications, we assume that the argument
has already been adjusted, if necessary.

The branch instructions beq, bne, blt, and bge are part of the native instruction set
and are left unchanged.

brs arg is translated as beq r0 r0 arg.

ble rX rY arg is translated as bge rY rX arg.

bgt rX rY arg is translated as blt rY rX arg.

The cal instruction is part of the native instruction set and is not translated.

jmp rX is translated as cal r0 rX.

nop is translated as beq r0 r0 0.

Machine instructions The remaining assembly instructions are native instructions
and are assembled directly, without translation.
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5 Real Computers

The CS52 Machine contains many of the features of a real computer, at least in
primitive form. In this section, we explore how the CS52 Machine concepts are
extended in real computers.

5.1 Memory and Registers

As in the CS52 Machine, memory in a real computer is indexed by bytes, but the
word size is larger. The 32-bit word was the standard for quite a while but is being
replaced with 64-bit words.

A real computer has more registers, seldom less than eight and often 32 or more.
Sometimes, as in the Intel x86 architecture, every register has a special purpose.

5.2 Instructions

The instruction set on a real computer includes, of course, many more arithmetic
operations. There are also more varied and flexible addressing methods for the store
and load operations. There are instructions to manipulate a wider range of data
types, including characters and floating point numbers. Finally, there are specialized
instructions that are used by the operating system; see Section 5.5.

Designing an instruction set requires careful thought. Instructions should be chosen
to give the programmer maximum flexibility and expressiveness. The particular
instructions should be the ones most frequently used. They should be grouped
according to form and function for easy decoding by the processor.

The CS52 Machine instruction set is quite uniform: Every instruction is exactly two
bytes long. The first four bits determine the instruction, and there are only two
instruction formats, as described in Section 4. (Many instructions disregard some,
or all, of their arguments, however. In those cases, the bits encoding the arguments
are ignored.)

An alternative to fixed-length instructions is a variable-length instruction set. The
Intel x86 instruction set, currently the most popular, contains instructions with
lengths from one byte up to fifteen bytes. An advantage of variable length instruc-
tions is that they make the code stream very compact; few bits are wasted. The most
commonly-used instructions can be made short.

Variable-length instruction sets were chosen in the 1970’s when the x86 processors
were first designed because they increased the speed of the computer. Frequently-
used combinations of instructions (like pop r2; jmp r2 on the CS52 Machine) could
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be combined into a single short instruction and executed as a single instruction on
the hardware. Further, programs expressed in variable-length instructions tend to
be more compact—a consideration that was important when memory was expensive.

Later, in the 1980’s, new processors used uniform, fixed-length instructions and
took advantage of the speed at which they could be decoded. The tension between
CISC (complex instruction set computers) and RISC (reduced instruction set comput-
ers) was high, and people argued the superiority of both approaches. The capabil-
ities of today’s processors make arguments about instruction sets moot. Complex
instructions can be quickly decoded and executed, which is probably why we still
use a descendant of the original x86 instruction set.

Figure 3 contains the Sieve of Eratosthenes in Intel x86 assembly language. The
code was generated by a compiler, and the branches are a little different from our
example. Deciphering the code is an interesting exercise. To get you started, we have
annotated the first loop. We will refer back to this code in subsequent sections.

5.3 Conditional Branches

The conditional branch instructions on the CS52 Machine make signed comparisons.
Unsigned comparisons can be different. For example, 0xffff is less than zero as
a signed word, but not as an unsigned word. There are cases in which we want to
make unsigned comparisons.

One solution would be to emulate the comparisons in software; see Exercise 6. Such
solutions involve complicated case-by-case analyses and would give unacceptable
performance on any real computer. Another solution would be to add unsigned
comparison instructions, but that greatly increases the complexity of the instruction
set.

A common solution is to use subtraction and add four one-bit registers, called flags.
The flags are modified on every arithmetic operation, and the conditional branch
instructions examine the flags, not the contents of registers. A branch instruction
like ble rX fY target would then, in three steps, compute rX � rY, discard the
result of the computation, and then determine the branch based on the flags.

A flag with the value 0 is said to be clear or “false,” and one with value 1 is set or
“true.”

� The carry flag is set when an addition causes a carry bit to be discarded, or
when a subtraction requires a borrow bit.

� The zero flag is set if the result of the arithmetic operation is zero.
� The sign flag is set if the result, interpreted as a signed value, is negative. The

sign flag is simply the sign bit of the result.
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_sieve:
pushl %ebp
movl %esp, %ebp
subl $440, %esp
movl $2, -16(%ebp) ; i = 2;
jmp L2 ; jump to loop test

L3:
movl -16(%ebp), %eax ; eax = i;
movl $0, -416(%ebp,%eax,4) ; num[i] = 0;
leal -16(%ebp), %eax ; eax = address(i);
incl (%eax) ; i++;

L2:
cmpl $100, -16(%ebp) ; compare i and 100
jle L3 ; branch back if i <= 100
movl $2, -16(%ebp)
jmp L5

L6:
movl -16(%ebp), %eax
movl -416(%ebp,%eax,4), %eax
testl %eax, %eax
jne L7
movl -16(%ebp), %eax
movl %eax, (%esp)
call L_write$stub
movl -16(%ebp), %eax
movl %eax, -12(%ebp)
jmp L9

L10:
movl -12(%ebp), %eax
movl $1, -416(%ebp,%eax,4)
movl -16(%ebp), %edx
leal -12(%ebp), %eax
addl %edx, (%eax)

L9:
cmpl $100, -12(%ebp)
jle L10

L7:
leal -16(%ebp), %eax
incl (%eax)

L5:
cmpl $100, -16(%ebp)
jle L6
leave
ret

Figure 3: The Sieve of Eratosthenes in Intel x86 Assembly Language. This function
was generated by the gcc compiler. The array and indices are all local variables.
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� The overflow flag is set when the result, interpreted as signed, is out of range.
For addition that means that the overflow flag is set when two operands having
the same sign produce a result with a different sign. For subtraction it means
that the operands have different signs and the minuend1 and result also have
different signs.

Combinations of these flags will give all possible comparisons. For example, with
unsigned values, a < b is true when the carry flag is set after computing a� b. With
signed values, a < b is true when the sign flag is different from the overflow flag.
See the course document Logic, Words, and Integers for further specifications.

Look again at Figure 3 and notice the branches. The sequence cmpl; jle corre-
sponds to CS52 Machine’s ble.

5.4 Stack Frames

The top of the stack may move during the execution of a subprogram (to store
intermediate results of a calculation, for example). Most real computers designated
another register, called fp, for frame pointer, to retain the location of the current
stack frame. The addresses of elements in a stack frame are computed using an
offset from the frame pointer. The frame pointer is called the base pointer in some
architectures.

Here is the sequence of operations that takes place when a subprogram is called:

1. The arguments are pushed onto the stack, one at a time, by the caller.
2. The call is made. Either the call instruction pushes the return address auto-

matically or the callee pushes it from a designated register.
3. The value of fp is pushed by the callee.
4. The value of sp is copied into fp.
5. The top of stack is adjusted to make space for the local variables.

There are many variations on this theme. The order of operations may be slightly
different, there may be a different division of labor between the caller and the callee,
and other values may appear in the frame. The crucial features are that the caller’s
values for fp, sp, and ic are saved (in steps 2, 3, and 4) for restoration later.

As shown in Figure 4, the frame pointer is an address in the middle of the frame. In
our convention, fp is the address of the first local variable. The return address is at
address fp � 4 (assuming two-byte words). The subroutine has complete access to
the arguments, as long as it knows how many there are.

Upon completion of the subprogram, the following steps are executed:

1The minuend is the top number in a subtraction problem. The subtrahend is subtracted from
the minuend.
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� sp

� fp, saved sp

local n� 1

...

local 0
saved fp

return address
argument m� 1

...

argument 0

6

top of stack

?

high addresses

Figure 4: A typical stack frame for a subprogram call with m arguments and n
local variables. As shown, the stack grows from higher addresses to lower ones.

1. The value of fp is copied to sp by the callee, effectively discarding the lo cal
variables.

2. The saved value of fp is restored with a pop by the callee.
3. The return address is popped by the callee, and execution returns to the caller.
4. The caller increments sp to discard the arguments.

Again, variations are possible. However the details are carried out, the essen tial
parts are to restore fp and sp to their values before the call and to set ic so that
the calling program continues on its way.

If the subprogram is a function, it returns its value either in a register or on the stack.
If a value is returned on the stack, space is allocated for it before the arguments
are pushed, so that the returned value is on the top of the stack after caller has
discarded the arguments.

Look, once again, at Figure 3 and notice the beginning and end. The Intel stack
pointer is %esp and the frame pointer is %ebp. The first few lines match our de-
scription exactly. It is not necessary to push the return address because the Intel
call instruction automatically pushes it. The exit code of the function is not as
clear, because all the operations are packed into the complex instructions leave

and textttret. It is a very good example of how a complex instruction set can pack-
age frequently-done operations.

5.5 Operating System Support

Just as an assembler makes programming more efficient, an operating system makes
using a computer easier. In this section, we touch on a few services provided by an
operating system and show how those features are supported by the hardware.
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Loader One bit of “magic” in our CS52 Machine simulator is the loader, which
reads an external program file and copies its contents into memory. In the CS52
application, the loader is an external program; on a real computer, the loader is
itself a program. When a user starts a program, the operating system reserves space
for it, the loader is invoked to copy the file into memory, and then the program is
started. When the program is finished, the operating system is called to reclaim the
memory. In a sense, a program is simply a subprogram of the loader.

One could conceivably write a loader for the CS52 Machine, but it would be awkward
to translate a program into a sequence of signed integers and enter it through the
CS52 Machine’s only input channel.

Memory Management On a real computer, several programs run at the same time,
each one having the illusion that it has the whole computer to itself. It is the oper-
ating system’s job to parcel out blocks of memory and to keep the programs from
interfering with one another. One aspect of the task is virtual memory. Each running
program has its own virtual memory space, as if it occupied the whole computer.
There is special hardware that translates virtual addresses into addresses in the ac-
tual memory. It is the operating system’s responsibility to maintain the different
translation tables in a way that each program has its own private region of memory.

A real computer has special registers and a collection of privileged commands that
the operating system uses to manage memory. It would be virtually impossible to
implement memory management on the CS52 Machine.

Multiprogramming Even though it appears that several programs are running on
a real computer, only one can actually be executing at a given instant. (Or, in the
case of multi-core and multi-processor computers, only a few can be executing at
one time.) The illusion of many programs running simultaneously is accomplished
through time-sharing. Each program gets a short amount of time on the processor,
and then is replaced by the next program. The switch between programs happens
many times a second, so that it appears that each program is executing continuously.

The operating system maintains a queue of programs that are ready to run, and it
moves from one to the next sequentially. The “trigger” to shift from one program
to another is a timer tick. The timer is an external device that sends a signal, an
interrupt, to the processor at fixed intervals. Typically, a tick occurs a few hundred
times a second.

The processor must support interrupts by having a few special registers for use by
the operating system only. When an interrupt occurs, the processor replaces the
user program’s stack pointer with another register which serves as the operating
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system’s stack pointer. A program in the operating system is then given control. It
saves the state of the currently-executing program—including all the registers, flags,
and virtual memory translation data. It then restores the state of another program
and allows it to resume execution.

The processor has two states: user state in which ordinary programs execute and
supervisor state in which the operating system executes. In supervisor state, the
operating system has access to the special registers and instructions to manage
memory and programs. Obviously, it would be very difficult to add interrupts and a
supervisor state to the CS52 Machine.

Input and Output Real computers have many different channels to get data in and
out of a computer. They include displays, keyboards, mice, tapes, disk drives, and
network interfaces. Memory mapping, which we have used in a primitive way with
mem�0�, is the most common method for communicating with these devices.

The idea is that each device is assigned a set of addresses, and the computer com-
municates with the device by loading and storing to those addresses. Most pro-
grammers will never actually use those addresses, because there is a set of routines,
called a driver, for each device that hides the low-level details. High level program-
ming languages provide a collection of facilities for communicating with the input
and output system.

A computer does not know when input has arrived, so a device (a network interface,
for example) sends an interrupt when it needs attention. Just as in the case of a timer
tick, the operating system takes over, transfers data from the device to memory, and
informs the relevant program that it has input. The “relevant program” may actually
be another part of the operating system. For example, when a new electronic mail
message arrives, the operating system passes it to the system-wide mail manager,
which in turn deposits it in the recipient’s mailbox.
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A The CS52 Machine Simulator

We will work with a Java application that assembles and runs CS52 Machine pro-
grams. The code for the application is contained in a Java jar file, found at /common/

cs/cs052/cs52-machine/cs52-machine.jar. In the laboratories, you may start it
by double clicking on the jar file or by executing a command in a terminal window.
See Appendix A.3 for the command line options. You may also download the jar file
from the course Resources page to your own computer and execute it there.

A.1 File Names

The application uses the following extensions for files:

.a52 a source program in assembly language

.m52 the object program, executable by the CS52 Machine

The program expects to be able to write to the directory in which it finds the files. If
you are running example programs, first copy them to a location in your own home
directory.

A.2 The Visual Application

On most platforms, you can start the application by clicking on the jar file’s icon.

The exact appearance of the window will differ according to platform, but it will be
organized as shown in Figure 5. There are two views of memory: On the far left is
the Data View in which the memory values are interpreted as data, and on the far
right is the Instruction View in which the memory values are interpreted as instruc-
tions. The instructions are translated into assembly language, with the default view
being the “Assembly View” showing the instructions that the programmer actually
wrote. The alternative is the “Machine View” which shows the actual native machine
instructions that the CS52 Machine executes.

To the left of the Instruction View is a panel that shows the registers and their
current values.

The large panel in the center is where the input and output takes place. Above and
below the input/output window are status messages and controls.

Controls on the main window The buttons have been designed to work in an in-
tuitive manner. The Load button opens a file selector window from which you can
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Figure 5: The appearance of the CS52 Machine simulator.

choose the file to run. The Reset button takes the machine back to the state at which
the program was originally loaded.

The four buttons at the bottom control the execution of the program.



The Back button causes the machine to go one step backwards. It is useful
when you want to study carefully a few steps of the CS52 Machine.
The CS52 Machine remembers on a limited number of steps, so there may be
cases when it is not possible to go backwards. In those cases, the Back button
will do nothing. The button will also be ignored when there is no execution
history or the machine is in a unrecoverable error state.

 The Stop button stops execution when the CS52 Machine is running. In other
cases it does nothing.

 The Step button causes the CS52 Machine to execute one instruction. It does
nothing when there is no “next” instruction.

 The Run button lets the CS52 Machine run to completion—or until one of the
other buttons is pressed.

If the machine has halted normally, pressing the Step or Run button will reset the
machine and start the program anew. If the machine is in an error state, it must be
reset explicitly by pressing the Reset button.

The slider above the four buttons controls the speed at which the CS52 Machine
runs.

The top-level menus The menus appear at the top of the screen on a Macintosh
and on top of the simulator window on other platforms. Under File there are clones
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of the Load and Reset buttons, a Clear button to erase all programs and data from
memory, and a Force Re-assembly button.

The Load and Reset buttons are programmed to call the assembler aggressively. A
program will be assembled prior to loading if the source file exists and the object file
either does not exist or it is older than the source file. An object file will be reloaded
if it is newer than the previously loaded file. In rare cases, the assembler will not
activate when it should. Use the Force Re-assembly selection in those situations.

Under the top-level View menu, you will find controls to switch between “Assembly
View” and “Machine View” in the Instruction memory window.

Under Memory there are selections to set the memory size. Notice that the memory
is cleared when its size is changed.

Stopping the simulator Exit the application by closing the window, selecting Quit
from the top-level File menu, or by pressing the appropriate key-combination for
your platform (usually command-Q or control-Q).

Breakpoints Perhaps the only non-obvious feature of the simulator is the facility
for setting breakpoints. Double click on a line in the instruction memory window.
The colon will change to a B indicating that the breakpoint is set. The simulator will
pause, as if you had pressed the Stop button, when the ic reaches the address of
the breakpoint. Use the Step or Run button to resume execution. Double click in the
instruction window again to remove the breakpoint.

A.3 Command Line Invocation

By invoking the program from the command line, one can obtain a wider range of
behaviors. The basic command is

java -jar <path-to-jar-file> <arguments>

The path is the location of the file cs52-machine.jar. Examples of paths are ~/

cs052/cs52-machine.jar and /common/cs/cs052/cs52-machine/cs52-machine.

jar. The arguments cause the the program to fulfill various functions.

Assembler The arguments for the stand-alone assembler are

-a [ sourceFile ] [ -f ]

When the sourceFile is specified, it must have the extension .a52, and the output
goes to the file with the same name and extension .m52. When the sourceFile is
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not specified, the input is taken from the standard input, and the output goes to the
standard output.

The -f flag indicates “filtered input” in which only lines between the tokens BEGIN

and END are passed to the assembler. This is a device that allows the assembler to
take input from a program that may spew other output.

Executor To run a program, give a version of the following arguments:

-r [ objectFile ] [ -m memorySize ] [ -u inputScript ]

When the objectFile is specified, it must have the extension .m52. If the objectFile

is not specified, the program is expected to come from the standard input.

If a memorySize is specified, it must be a decimal or hexadecimal integer specifying
the number of bytes, or else a decimal or hex integer followed by the letter K, spec-
ifying the number of kilobytes. The smallest permissible memory size is 64 bytes.
The largest is 216 or 65; 536 bytes, or 64K.

If an input script is specified, it must exist as a text file with one decimal integer to
a line. It is not possible to take both program and user response from the standard
input.

Pipe The pipe mode is like the executor, except that the input is a source file that
is passed to the assembler before execution. No object file is created.

-p [ sourceFile ] [ -m memorySize ] [ -u inputScript ] [ -f ]

As above, the program comes from a specified file or the standard input. The other
flags have the same meaning as before.

Visual Application One can also start the visual application from the command
line, with the advantage of optionally specifying a non-standard memory size.

[ -m memorySize ]

A.4 Error Messages

Here is a list of error messages generated by the application. The majority of the
messages correspond to errors found by the assembler, before the program runs.
Most of the messages are self-explanatory.

Source file not found.
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Source file could not be opened.

Object file could not be created.

Illegal character . . . The alphabet of the assembly language consists only of letters,
plus, minus, underscore and semicolon.

Register name used as argument at line . . .

Extra arguments for . . . at line . . .

Incorrect number of registers for . . . at line . . .

Argument needed for . . . at line . . .

Argument must be numeric for . . . at line . . .

Single string argument is required by . . . at line . . .

Auxiliary code must be a constant for . . . at line . . .

Illegal opcode . . . at line . . . The assembler found a string that is not one of the
accepted opcodes. Check your spelling.

Constant out of range at line . . . The numeric argument to instructions like lcw must
be 16-bit quantities.

Argument out of range for . . . at line . . . The numeric argument to instructions like
add and loa must fit into a single byte.

This error can occur in branch instructions as well. A branch, when taken, adds
an eight-bit signed quantity to the IC. The error is telling you that the target is
too far away from the branch instruction. See page 26.

Illegal label at line . . . A label must begin in the first column and start with a letter.

Data in executable block at line . . . A dat directive may not appear between instruc-
tions; see page 23.

Bad argument to dat directive at line . . .

No executable code in source file.

No library file specified at line . . .

Library file . . . at line . . . not found.

Library depth exceeded. Library files included by the inc instruction may be nested
up to a depth of four.

Duplicate label: You have declared the same label twice in your program.

Label not found: You have used a label in an instruction but have not declared it.
The label does not refer to a location in the program.

Another, smaller, class of errors are those encountered at runtime.

Unimplemented instruction at address . . .

Illegal instruction format at address . . .

IC is odd. This error is usually a sign of a runaway program, often due to corrupted
memory.

Memory access out of bounds at address . . .
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Input is not a number or out of range. The user has typed input that is not a num-
ber or is out of range for a sixteen-bit signed quantity.

Input is unavailable, possible overuse of stdin. In the command line operation of
the simulator, it is not possible to take both a program and user responses
from the standard input.

Incorrect memory size. The memory size specified on the command line was out of
range.

Error in machine code file. The CS52 Machine encountered an error when loading a
program.

Program too large.

File not found

Division by zero at address . . .

There are a few error messages that describe internal inconsistencies in either the
assembler or the runtime system. It is unlikely that you will see them, but please
report them if you do. They all begin with the same phrase.

Twilight zone: . . .

A.5 Legal Stuff

The software and its documentation is copyright © 2009–2016, Everett L. Bull, Jr.
All rights reserved.

47



B Binary Representation of Integers

The basic unit of data on the CS52 Machine is the 16-bit word, consisting of two
consecutive bytes. A word can represent an unsigned address into memory, a signed
integer data value, or a machine instruction.

If b15b14 : : : b2b1b0 is the sequence of bits in a word, we interpret it as the unsigned
integer having the value

b15215 � b14214 � : : :� b222 � b121 � b020:

The unsigned values range from 0 through 216 � 1. Memory addresses are unsigned
integers.

The same bit pattern can be interpreted as the signed integer whose value is

�b15215 � b14214 � : : :� b222 � b121 � b020:

The only difference is the sign on the leading term. Signed values range from �215

through 215 � 1. The high-order bit b15 is the sign bit; it is 1 when the value is
negative. Notice that “signed” does not mean “negative,” rather it means “potentially
negative.”

A signed value can be negated by complementing all the bits (switching them be-
tween 0 and 1) and then adding 1. When negated, the word

00000000 00000010

becomes

11111111 11111101� 00000000 00000001 � 11111111 11111110:

We have just transformed 2 into �2 in binary.

One can also view single bytes as unsigned or signed. The unsigned values range
from 0 through 28 � 1. The signed values range from �27 through 27 � 1. An
unsigned byte can be converted to an unsigned word by adding 8 zeroes on the left.
Interestingly, a signed byte can be converted to a signed word by padding it on the
left with 8 copies of the sign bit. This process is called sign extension and is used
frequently in the CS52 Machine.

Addition and subtraction can be carried out on unsigned or signed values; the algo-
rithm is exactly the same. In both cases, we simply discard the carry-out from the
high-order bit. It is possible to compute a result that is not expressible in 16 bits.
Whether or not a result is erroneous depends on the interpretation we impose. For
example,

01000000 00000000� 01000000 00000000 � 10000000 00000000;
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which is correct in the unsigned case. In the signed case, it is incorrect because we
add two positive numbers and get a negative result. On the other hand,

11000000 00000000� 01000000 00000000 � 00000000 00000000;

is incorrect in the unsigned case because we add two positive numbers and get zero.
It is correct in the signed case, because adding �215 � 214 and 214 really does give a
result of zero.

It is cumbersome to write out sequences of 16 bits, and we often resort to hexadeci-
mal notation. We divide the bits into 4-bit blocks and take the hexadecimal (base-16)
value of each block. We use the ordinary digits 0 through 9 for their usual values
and then add the letters a through f for the values 10 through 15. The prefix 0x is
often used to distinguish a hexadecimal value from a decimal one. The hexadecimal
expression 0x3c04 corresponds to the bit pattern

0011 1100 0000 0100:

The CS52 Machine supports operations besides addition and subtraction. It can shift
bits in a word left or right. When it shifts a word three bits to the left, it discards
three bits on the left and adds three zeroes on the right. Shifting one bit to the
left is the equivalent of multiplying by 2. Shifting three bits left is the equivalent of
multiplying by 8.

Right shifts are the equivalent of dividing by powers of two. the logical right shift
adds zero bits on the left. It is the equivalent of dividing an unsigned number by a
power of two. The arightmetic right shift adds copies of the sign bit of the original
word. In that way, it preserves the sign. The arithmetic right shift is the equivalent
of dividing a signed number by a power of two.

We often talk about logical and arithmetic left shifts as well, but they are the same
operation.

There are three boolean operations on bits:

� and gives the minimum of the two bits. The result is 1 only when both
operands are 1.

� or gives the maximum of the two bits. The result is 1 except when both
operands are 0.

� xor is the exclusive-or operation. The result is 0 when the two operands are
the same, and 1 when they differ.

The CS52 Machine is capable of bitwise boolean operations. The boolean operation
is applied in parallel to the bits in a word. The bitwise-and of a word with

00000000 11111111
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sets the high-order byte to zero and leaves the low-order byte unchanged. The
bitwise-or of a word with that value leaves the high-order byte unchanged and sets
the low-order byte to all 1’s. The bitwise-xor of a word with that value leaves the
high-order byte unchanged and complements all the bits in the low-order byte.
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C Sample Programs

Here are the listings of a few programs, including those developed in the text. Others
examples can be found online in the course resources.

C.1 Subtract

;
; subtract.a52
;
; A simple CS52 Machine program that subtracts
; two numbers. A first example.
;
; Rett Bull
; Pomona College
; Written for CS41B, July 17, 2009
; Adapted to the CS52 Machine, February 12, 2016
;

loa r2 r0 ; get first value
loa r3 r0 ; get second value
sub r2 r2 r3 ; subtract them
sto r2 r0 ; print result
hlt ; quit
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C.2 Sign

See Exercise 4 in Appendix E for a branch-free way to compute the same value.

;
; sign.a52
;
; A CS52 Machine program that illustrates conditional
; execution by determining the sign (-1, 0, or +1) of
; an integer.
;
; Rett Bull
; Pomona College
; Written for CS41B, August 7, 2009
; Adapted to the CS52 Machine, February 12, 2016
;
;
; if (a < 0)
; write(-1);
; else if (0 < a)
; write(1);
; else
; write(0);
;
;

loa r2 r0 ; get a value for a

ble r0 r2 elseif ; first comparison
add r3 r0 -1 ; place result -1 in r3
brs endif ; skip other clauses

elseif
ble r2 r0 else ; second comparison
add r3 r0 1 ; place result +1 in r3
brs endif ; skip other clauses

else
mov r3 r0 ; place result 0 in r3

endif
sto r3 r0 ; write the value in r3
hlt ; halt
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C.3 Sieve of Eratosthenes

;
; sieve.a52
;
; A CS52 Machine program that executes the Sieve of Eratosthenes
; to illustrate arrays, conditional execution, and nested
; loops. We use all three general registers; there is no
; stack.
;
; Rett Bull
; Pomona College
; Originally written for CS41A in the Fall of 1989
; Adapted to CS41B on July 28, 2009
; Modified on August 7, 2009
; Adapted to the CS52 Machine on February 12, 2016
;
;
; int i;
; for (i = 2; i < 100; i++)
; num[i] = i; // any non-zero value will do; i is convenient
; for (i = 2; i < 100; i++)
; if (num[i] != 0) {
; write(i);
; j = i;
; while (j < 100) {
; num[j] = 0;
; j += i;
; }
; }
;
;
;
;

;
; Data area: We set aside a location to store i and a sequence
; of words for the array num.
;
i dat 2 ; i, at address 2, the first "real" memory cell
num dat 200 ; an array indexed 0 through 99;
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;
; First loop:
;
; We use the fact that num is a small address, and use it as an
; offset to the sto instruction. If num were not a small address,
; we would have to load it into a register using a stored offset.
;

add r3 r0 2 ; i = 2;
add r1 r0 100 ; limit = 100;

ble r1 r3 enda ; check if done
loopa

sal r2 r3 1 ; double to get word offset
sto r3 r2 num ; num[i] := i
add r3 r3 1 ; i++;
blt r3 r1 loopa ; go back for another round

enda
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;
; Second (nested) loops: In the inner loop, we have more
; quantities than registers. We have to store i temporarily
; and reload the constants when they are needed.
;
; The code is "semi-optimized" in the sense that we have
; eliminated redundant labels and branches. For clarity,
; we retain the instructions that restore the constant
; value 100 into r1; only one of the three instances of
; that instruction is necessary.
;

;;; set up outer loop
add r3 r0 2 ; i = 2
add r1 r0 100 ; limit = 100
ble r1 r3 endb ; conditional branch to endb

loopb
;;; body of outer loop

sal r2 r3 1 ; double to get word offset
loa r2 r2 num ; load num[i]
beq r2 r0 endif ; branch to endif when num[i] == 0
sto r3 r0 ; write(i)

;;; set up inner loop
sto r3 r0 i ; store i temporarily

; we now use r3 for j
ble r1 r3 endc ; conditional branch to endc

loopc
;;; body of inner loop

sal r2 r3 1 ; get address of num[j]
sto r0 r2 num ; make num[j] zero
loa r2 r0 i ; recover i
add r3 r3 r2 ; increment j
blt r3 r1 loopc ; conditional branch to loopc

endc
;;; clean up after inner loop

loa r3 r0 i ; restore i into r3
endif

;;; finish the outer loop
add r3 r3 1 ; increment i
blt r3 r1 loopb ; conditional branch to loopb

endb
hlt ; we’re done!
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C.4 Factorial

;
; factorial.a52
;
; A CS52 Machine program that computes factorials. It
; illustrates subprogram calls and the use of the
; stack for local variables.
;
; Rett Bull
; Pomona College
; CS41B version, August 7, 2009
; CS52 Machine version, June 22, 2016
;
; int factorial(int x) {
; if (x <= 0)
; return 1;
; else
; return mult(f(x-1), x);
; }
;
; We use the CS52 Machine’s multiplication library and
; adopt the CS52 Machine conventions for the use of the
; stack and registers.
;

;
; main routine: establish the stack, then read
; and write.
;

lcw r1 stack ; set up stack
loa r3 r0 ; get variable

lcw r2 fact ; call fact
cal r2 r2 ;

sto r3 r0 ; write result,
hlt ; and halt
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;
; fact subprogram: One argument, in r3.
;
fact

psh r2 ; save return address
blt r0 r3 recursion ;

add r3 r0 1 ; base case; result is 1
brs done ;

recursion
psh r3 ; save argument
sub r3 r3 1 ; decrement argument

lcw r2 fact ; make recursive call
cal r2 r2 ;

lcw r2 mlmul ; call the multiplication routine
cal r2 r2 ; one argument is in r3

; and the other is on
; the stack

pop r0 ; discard saved argument
; result is already in r3

done
pop r2 ; restore return address
jmp r2 ; return

;
; include the multiplication library
;

inc mullib

;
; stack area: 50 words
;

dat 100
stack
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C.5 Multiplication Library

A library is not a program, rather it is included with the directive inc in another
program. Here is an example library that provides a multiplication function. The
sample programs include the libraries divrlib.a52 and divilib.a52, which pro-
vide recursive and iterative division functions.

;
; mullib.a52
;
; A multiplication library for the CS52 Machine.
;
; Rett Bull
; Pomona College
; February 3, 2016
;
;
; SEE ALSO: divrlib.a52 and divilib.a52 for recursive
; and iterative division routines.
;
; USAGE: Word values are interpreted as signed integers.
;
; One argument (call it X) is on the stack and another
; argument (Y) is in r3.
;
; The function mlmul leaves X*Y in r3, and X remains
; unchanged on the stack. More precisely, the routine
; leaves the low-order word of X*Y in r3.
;
;
; LABEL CONVENTION: The entry point is mlmul. To avoid
; conflicts with other programs, all local labels start
; with libm.
;
;

58



; MULTIPLICATION: Essentially, we are doing elementary
; school multiplication in binary. It requires that
; the multiplier Y is non-negative. We will end up with
; the low 16 bits of X*Y.
;
; mlmul(X,Y) {
; if (Y < 0) {
; X = -X;
; Y = -Y;
; }
; P = 0;
; while (Y != 0) {
; if (Y & 1 == 1)
; P += X;
; X = X << 1;
; Y = Y >> 1;
; }
; return P;
; }
;
; X is always in r2
; Y and P share r3
; Temporary storage is allocated on the stack, with Y
; on top and P below it.
;
;
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mlmul ;;; prolog
psh r2 ; push the return address
psh r0 ; push initial value of P
loa r2 r1 6 ; fetch initial value of X

;;; make sure the signs are correct
bge r3 r0 libmpos ; test the sign of Y
neg r2 r2 ; change sign of X
neg r3 r3 ; change sign of Y

libmpos ;;; get ready for the loop
beq r3 r0 libmdone ; if Y = 0, we are finished
psh r3 ; push Y

libmloop ;;; the body of the loop
and r3 r3 1 ; test low bit of Y,
beq r3 r0 libmnadd ; and skip adding if it is 0
loa r3 r1 4 ; fetch P
add r3 r3 r2 ; add X to P
sto r3 r1 4 ; save P

libmnadd
loa r3 r1 2 ; recover Y
slr r3 r3 1 ; shift Y right (logical shift, why?)
sto r3 r1 2 ; store Y back again
sal r2 r2 1 ; shift X left
bne r3 r0 libmloop ; go back for more if Y != 0

pop r0 ; discard temporary Y

libmdone ;;; postscript
pop r3 ; get the result P
pop r2 ; recover the return address
jmp r2 ; return to the caller
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D Historical and Contextual Notes

D.1 History

The tradition of the CS52 Machine goes back to the 1980’s when a rudimentary
computer and the assignments surrounding it were inspired by Professor Richard
Lorentz, then at Harvey Mudd College. In its original incarnation, the computer had
only one data register and used decimal numbers.

The CS41A machine was designed in 1989 to look a little more like a real computer
and to illustrate more concepts. In particular, it introduced an explicit instruction
encoding. The original intention was to have a sequence of machines, CS41B, CS41C,
and so on, of increasing complexity. It quickly became evident, however, that the
CS41A architecture was not an adequate platform for expansion. Stack operations
were to be an enhancement of the CS41B Machine, but maintaining a stack with only
one register was too cumbersome. It became clear that CS41B would have to be an
entirely new machine and could not be an extension of CS41A.

The CS41A machine stabilized in 1989 and was not changed thereafter. It was used
until 1997, when it was abandoned in favor of another simulator, called ISC, that
offered more registers and more flexibility.

In the spring of 2009, alumni from the late 1990’s returned to campus and reported
that they had been amusing themselves rewriting CS41A assignments from a decade
earlier. Their report prompted another look at CS41A and its window-based simu-
lator. The simulator was a real advantage, and in the summer of 2009 the CS41B
Machine was designed and implemented. As expected, it has multiple data regis-
ters and the facilities for calling subprograms. The simulator was written and the
examples and assignments were translated into the new instruction set.

The CS52 Machine was written in the spring of 2016. It is an incremental improve-
ment over the CS41B machine, based on years of experience with CS41B. The new
machine retains the same hardware architecture of its predecessor, but its native
instruction set is new and has additional facilities for bitwise logical operations and
shifts. The assembly language is richer and easier to use. The simulator has added
features that make it easier to observe a program’s execution.

D.2 Design Decisions

The CS52 Machine provides a simple yet realistic model of the register-transfer level
of a computer. It introduces students to assembly-language programming, gives
them an general idea of what a compiler actually does, and shows them how recur-
sion is implemented.
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The basic architecture follows the original RISC design: uniform length instructions,
three-register operations, and straightforward encoding of instructions into bits.
The 16-bit word is large enough to accommodate a reasonable instruction set and
suffices for moderately sized programs.

Four data registers (constant zero, stack pointer, and two data registers) are just
enough to support stack-based execution. It would have been possible to design
an instruction set with eight registers, but that would have limited the types of
operations and, more importantly, would have made programming too easy. With
only two general-purpose registers, students have to confront significant resource
constraints.

The CS52 Machine has only one datatype, the 16-bit signed integer. It would have
been possible to add, say, a single byte type, but it would have been difficult to
squeeze in an adequate number of instructions to support the type. The same can
be said, even more strongly, about characters, unsigned numbers, and multi-word
structures. Only simple numerical applications are possible, but those are sufficient
to illustrate assembly programs, translation, and recursion.

I was tempted to include some form of operating system support, but in the end I
decided against it. It would take the machine too far away from its intended pur-
pose. Certainly, adding interrupts would have made the machine much too compli-
cated. On the other hand, it would be feasible to add a few system services—the cal

instruction has some extra bits that could be used to encode them, but the extra
overhead of maintaining call vectors and inserting systems code would only make it
harder to understand the operation of simple programs. As a result, the assembler,
the loader, and the input-output system all operate externally to the CS52 machine.

The use of memory address 0 for input and output is perhaps over-simplified, but
it does illustrate memory-mapped I/O. It is not hard to generalize from that triv-
ial instance how keyboards, network interfaces, mice, and even video displays are
connected to a processor and memory.

The CS52 Machine’s assembly language is rich enough to be natural, but not so rich
as to remove the programmer very far from the registers and memory. Instructions
like psh, pop, and mov are natural and convenient. When students learn that the
natural operations are actually built on the more primitive machine language, they
come to appreciate what assemblers and compilers do for them.

I made little attempt to explain how the CS52 Machine operates below the register-
transfer level, but it is not difficult to imagine how it might be done. The bit-level
encoding of instructions was chosen to make it possible to construct a CS52 Machine
out of gates. Perhaps some enterprising student will use a circuit simulator to do
just that.
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D.3 Comparison with the CS41B Machine

This section, which is slated to disappear in 2017, is intended for programmers with
experience with the older CS41B Machine; others should ignore it.

Filenames The file extensions are now .a52 and .m52.

æ To adapt a CS41B Machine program, begin by making a copy with the extension
.a52.

The sto Instruction The order of registers passed to the sto instruction has
changed. The instruction

sto rX rY arg

now computes the address rY � arg and places the value in rX in memory at that
address.

The change was made to bring symmetry to the sto and loa commands. In the CS52
Machine, the first register contains the value that is traveling between a register and
memory. The address is computed from the value in the second register and the
optional sign-extended argument. The circuitry on an actual computer is simpler
when the address is always computed from registers in the same position in the
binary instruction.

æ To adapt a CS41B Machine program, reverse the order of registers in every sto

command.

The sbc Instruction The sbc instruction has been eliminated. Programmers may
use sub instead.

æ To adapt a CS41B Machine program, replace each sbc instruction with sub.

The pau Instruction The pau instruction has been eliminated. It has been replaced
with a breakpoint facility.

æ To adapt a CS41B Machine program, take out the pau instructions.

The end Directive The end directive has been eliminated. There was no real need
for it.

æ To adapt a CS41B Machine program, take out the end directive.
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The lcl Instruction The lcl command (“load constant byte low”) has been elimi-
nated. It was used only to construct a constant word, a process that is now done in
a different way.

æ To adapt a CS41B Machine program, do nothing. It is highly unlikely that any
human programmer would have used the lcl command.

Idiom While the adc instruction is still present in the CS52 Machine’s assembly
language, its use by programmers is discouraged. One can write

add rX rY arg

as well as

add rX rY rX

so that adc can be replaced by add. It is more natural to use the same mnemonic for
both operations, even though they are different at the machine level. The assembler
distinguishes between the two cases.
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E Practice Exercises

Here are some exercises to hone your skills with the CS52 Machine and its instruc-
tion set. Variations of some of the exercises may appear on assignments.

1. Write a sequence of CS52 Machine instructions that interchanges the values in
two registers without changing the data in any other register or memory location.
Hint: Consider the following sequence of assignment statements.

x = x + y;

y = x - y;

x = x - y;

2. Write a one-instruction infinite loop in the CS52 Machine assembly language.

3. a. It is sometimes useful to separate the two bytes of a word. Write a sequence of
CS52 Machine instructions that replaces the word in r3 with its low-order byte and
leaves the other registers unchanged. (Hint: Think about shifts.)

b. Do the same for the high-order byte.

4. Explain why the following CS52 Machine program has the same behavior as the
sign program given in Appendix C.2.

loa r2 r0

neg r3 r2

sar r2 r2 15

sar r3 r3 15

sub r3 r2 r3

sto r3 r0

hlt

5. There is one low-level detail about the CS52 Machine that has not been explicitly
specified. It is the question of “endian-ness.” We know that a word at address adr

occupies the two bytes at addresses adr and adr+1. If the value of the word is
0x0123, then one byte has value 0x01 and the other has value 0x23. But which is
which?
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A computer’s representation of integers is little endian if the less significant byte,
0x23 in our example, is at the lower address. It is big endian if the less significant
byte is at the higher address.

a. Write a short program to determine the “endian-ness” of the CS52 Machine.

b. Why do you have to write a program to discover the “endian-ness?” What is wrong
with just looking at the values in the Data View panel?

c. Do some research to discover which famous literary work originated the terms
“big endian” and “little endian.”

6. In some computer architectures, engineers have adopted the convention that the
words “less” and “greater” refer to signed integer comparisons, and the words “be-
low” and “above” refer to unsigned integer comparisons.

a. List the conditions, in terms of signed comparisons of values in registers, under
which “rX is below or equal to rY” is true.

b. Suppose that you wanted to add a new synthetic instruction bbe, branch on be-
low or equal, to the CS52 Machine’s assembly language. Give a sequence of native
instructions that corresponds to

bbe rX rY target

Assume that target is a label. You may use that label in the instruction sequence,
but you may not introduce new labels. (However, it may be helpful to write a pre-
liminary version using labels.)

7. When multiplying two 16-bit words, we may need as many as 32 bits to express
the product. The function in the multiplication library of Appendix C.5 returns
only the 16 low-order bits of the product. Write a new multiplication function that
returns the full product in two words.

You may choose to implement either signed or unsigned multiplication. Make a
choice and stick with it.

8. This exercise explores an interesting boundary case of the multiplication library
from Appendix C.5. It illustrates the care one must take when writing low-level
routines.

Near the end of the code for mlmul, we see the line
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slr r3 r3 1 ; shift Y right (logical shift, why?)

a. When applied to non-negative signed values, the operators sar and slr do the
same thing. For what value of Y is it necessary to use the logical shift? What would
happen if we used the arithmetic shift instead?

b. Explain why the routine gives the correct answer for the 16 low-order bits in all
cases.
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F Assembly Language Quick Reference

Here is a listing of all the CS52 Machine assembly language commands, along with their
possible arguments. See Section 3 for details.

Legend: R register B signed byte offset F string
S signed byte W full word [ ] optional
U unsigned byte A 6-bit constant

Arithmetic, bitwise logical, and shift instructions

add
sub
and
orr
xor

9>>>>>>=>>>>>>;
RRR or RRS

mov
neg
not

9>=>; RR

sll
slr
sal
sar

9>>>>=>>>>; RRR or RRS

Memory and data-moving instructions

sto
loa

)
RR[S]

psh
pop

)
R lcw RW

Control instructions

beq
bne
blt
bge
bgt
ble

9>>>>>>>>>=>>>>>>>>>;
RRB

brs B

cal RR
jmp R

nop

hlt [A]

Directives

dat W inc F

Machine instructions, unlikely to be used by human programmers

ari RRRA
adc RRS
anc RRS

orc RRS
xoc RRS
sft RRS

lch RU
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