
Computer Science 54

Assignment 6
Sunday, October 16 @ 11:59pm

https://xkcd.com/538/

Partners On this assignment you may (and I’d encourage you to) work with
a partner. If you choose to, you must both be there anytime you’re working on
the assignment.

Submission When you’re all done, run the check file. If all is well, submit
your assignment via Gradescope. If you worked with a partner, make sure
that both names are at the top of the file. Only one person needs to submit,
but make sure you add the other person when you submit. For this assign-
ment you need to submit two files: your assign6.pdf file as well as your
assign6.sml file.

The starter file

Take a few minutes to read through the starter file. In addition to sections for
your functions, for this assignment, we also provide a number of important
additional functionality that you will need to use for writing your functions.

The main thing that the starter provides is functionality to handle extremely
large integers.

For encryption, we must use integers that are much larger than the ordinary
SML int whose largest value is 230 − 1, or 1, 073, 741, 823. On current 64-bit
processors, the largest integer is 263 − 1, a considerably larger number that is
nearly 1019, but is still too small for our purpose. Fortunately, SML (like most
other programming languages) provides “infinite precision” integer facilities
through a structure named IntInf. Its integer type is IntInf.int.

https://xkcd.com/538/


computer science 54, assignment 6 2

One of the features of the starter code in the template file is that it converts
the ordinary arithmetic operations to use the type IntInf.int instead of the
ordinary int. With those declarations, you can create a function like this

For efficiency reasons, use quot and rem
instead of div and mod.

fun squareMod (k,n) = k * k rem n;

and obtain the type signature of

val squareMod = fn : IntInf.int * IntInf.int -> IntInf.int

As you write your functions, be sure that all the type signatures contain
IntInf.int and not something like ?.intinf.

Most of the features of the starter file are described in comments. Be sure
to read them and understand how they are used. A few functions require
more explanation than we want to put in comments and are explained in an
appendix to this assignment.

Latex

For most of the assignment going forward, you will use Latex to generate
your assignments. Latex is a very powerful software tool for generating
documents that is particularly good when doing math (among other things!).

0. [1 point] Your first Latex document
To make sure you’re ready for the next assignment, you need to be able to
at least setup a basic Latex project and generate a document. On the course
webpage is a file called assign6.tex. You must download this file and use
Latex to create a version of this document where you edit the “author” tag
to change it from “Me” to your name and then generate a pdf file. There are
many Latex editors out there, but we recommend using overleaf, which allows
you to access and generate your pdfs via a web interface.

Here is one path towards doing this:

• Follow the instructions at:
https://www.overleaf.com/learn/how-to/Creating_a_

document_in_Overleaf

for creating an overleaf account and starting a new project. I’d recom-
mend calling the project “Assignment 6” (or something like that.

• Download the “assign6.tex” file from the course webpage.

• Get the contents of “assign6.text” into your overleaf project. The easiest
is to upload this file, though you could also make a blank .tex file and
copy the contents.

• Get it compiling in overleaf and change the author tag to your name.

• Download the .pdf file from overleaf!

https://www.overleaf.com/learn/how-to/Creating_a_document_in_Overleaf
https://www.overleaf.com/learn/how-to/Creating_a_document_in_Overleaf


computer science 54, assignment 6 3

Assembling the Tools

1. [1 point] Declare a function powerMod that computes be mod n using the
recursive exponential function below. Whenever you want to use a constant (like, 0,

1, or 2), make sure to use the IntInf.int
constants (zero, one, two) since this will
help avoid any ambiguity for SML.

be =


1 if e = 0,
(be/2)2 if e is even, and
(be/2)2 · b otherwise.

The expression e/2 in the recursive step signifies integer division, with
truncation.

powerMod : IntInf.int * IntInf.int * IntInf.int -> IntInf.int

The order of the arguments is b, e, and then n. You may assume that b and
n are positive, and e is non-negative. The function squareMod, used as an
example earlier, will be helpful. Be sure to take the remainder after every
arithmetic operation to keep the size of the intermediate results under control.

A comment on the algorithm: You will use powerMod at least twice later in
the assignment. It is critically important that you follow the formula above.
The more obvious strategy—of multiplying b by itself e times—could take
centuries. The reason that the “repeated squaring” strategy is better is that
the recursive step has the exponent e/2 instead of e − 1. The exponent e gets
one bit shorter with each recursive call, so the number of recursive calls is
the number of bits required to express e in binary. For example, if e is one
million, about 220, the “repeated multiplying” strategy will do about a million
multiplications, compared to at most 40 for the “repeated squaring” strategy.
In our work, the exponents will be much larger, and the contrast will be even
more dramatic.

2. [2 points] To be able to translate arbitrarily long messages we need to be
able to break a number that is larger than n into a collection of numbers that
are all smaller than n (and then the reverse operation), all in a way that is
efficient in space usage.

Declare a pair of functions to convert between integers and their base-n list
representations. The functions block n and unblock n should be inverses
of one another. These should feel very similar to some of the

functions we’ve written previously.
block : IntInf.int * IntInf.int -> IntInf.int list

unblock : IntInf.int * IntInf.int list -> IntInf.int

The expression block(n,m) creates a list [x0,x1,...,xk] each of whose
entries is a non-negative integer less than n and which satisfies

m = x0 + x1 · n + x2 · n2 + . . . + xk · nk.



computer science 54, assignment 6 4

Effectively, the result of block n m is the base-n representation of the
integer m. The expression unblock(n,[x0,x1,...,xk]) recovers the value
of m from the list.

For example: In practice, we’ll use n that is much larger.
Notice that the lower order “digits” are at the
beginning (left) of the list.- block (2,26);

val it = [0,1,0,1,1] : IntInf.int list

- block (111,12345678910);

val it = [58,110,5,36,81] : IntInf.int list

- unblock (2, block (2,26));

val it = 26 : IntInf.int

3. [2 points] RSA encrypts numbers. To encrypt a string, we need to be able
to convert from any string into some corresponding number. One way to do
this is to treat each character in a string as a digit. Characters correspond
to integers between 0 and 255. The function ord maps a character to the

You can see the correspondence between
integers and characters at https://www.
asciitable.com/.

corresponding integer. Its inverse is the function chr. A string may be
represented, via explode and ord, as a list of values between 0 and 255.
Once we have a list of numbers (representing the “digits”) we can turn it into
an IntInf.int represented in base 256. Hint: block and unblock will be helpful!

They deal with IntInf.Ints. The fromInt
and toInt functions convert between ints
and IntInf.ints.

Declare a pair of functions that translate between a string and the correspond-
ing IntInf.int.

messageToIntInf : string -> IntInf.int

intInfToMessage : intInf.int -> string

These functions allow us to translate between a string and its numerical
representation.

- val abcInt = messageToIntInf "abc";

val abcInt = 6513249 : IntInf.int

- intInfToMessage (abcInt);

val it = "abc" : string

The value 6513249 is (ord #"a") + (ord #"b")256 + (ord #"c")2562. 97 + 98 ∗ 256 + 99 ∗ 2562 = 6513249

Important convention: For this assignment, let us agree that strings are
encoded so that the first character corresponds to the low-order part of the
integer. This is the same convention that we used in earlier assignments.

Carrying Out the Encryption

4. [1 points]Write a function rsaEncode that takes a key (e, n) and an
integer less than n and returns the encryption of the integer. The result will
also be an integer less than n.

https://www.asciitable.com/
https://www.asciitable.com/


computer science 54, assignment 6 5

rsaEncode : IntInf.int * IntInf.int -> IntInf.int -> IntInf.int

The result of rsaEncode (e,n) m is me mod n. Do not forget that you
wrote powerMod in Problem 1.

We’ll be generating keys in a minute, but if
you’d like to use a “valid” key for debugging,
you can use (7, 111).

5. [2 points]We now have all of the pieces to support encryption and decryp-
tion, given a set of keys. Remember, to encrypt a string:

- We turn the string into a number,

- then break this number into n sized chunks.

- then encrypt each of these chunks using the public key.

- And finally, put it all back together into a single number.

Decryption is just these steps in reverse using the private key.

a. Write a function encodeString that takes a key (e, n) and a string, and
produces a single IntInf.int value that encrypts the message contained in
the string. This function should be a straightforward combination of functions
that you have already written.

encodeString : IntInf.int * IntInf.int -> string -> IntInf.int

b. Write an analogous function decodeString, then use the private key (31,
111) to decode the result from part b.

decodeString : IntInf.int * IntInf.int -> IntInf.int -> string

Assuming everything works, you should be able to encode and then decode a
message with a pair of keys (e.g., (7, 11) and (31, 111):

- val encrypted = encodeString (7, 111) "CS54 is my favorite class!";

val encrypted =

397205335758531275142249411863858662823428826090037031845358616 : IntInf.int

- decodeString (31, 111) encrypted;

val it = "CS54 is my favorite class!" : string

Generating Keys

6. [3 points] You now have encoding and decoding functions that depend on
having appropriate keys. The next step is to generate public and private RSA
keys.

Create a function industrialStrengthPrime that takes a random number
generator and an integral number of bits. It creates a “random” prime with
at most the specified number of bits. We declare a number p to be prime if There is additional material and class

discussion about why this test produces
numbers that are “very likely” to be prime.

ap mod p = a for twenty random a’s that are less than p. See the description
at the end of this assignment for instructions on how to generate random
IntInf.int’s.



computer science 54, assignment 6 6

industrialStrengthPrime : Random.rand -> int -> IntInf.int

Important: There must be only one random number generator that generates
all the random values. It must be declared outside of the function (like in
Assignment 4).

7. [0 points]We now have all the pieces that we need to generate a pair of
public/private keys. The general algorithm to generate a key is:

0. Find the two industrial strength primes p and q.
1. Compute their product n = pq and ϕ(n) = (p − 1)(q − 1).
2. Generate a random number d less than n and apply the function
inverseMod to it and ϕ(n).

3. If the result from inverseMod is SOME e, then you have correct
values for d and e. If the result is NONE, try again with a different
random number d. Repeat from step 2 until you have all three
values.

newRSAKeys : int -> (IntInf.int * IntInf.int) * (IntInf.int * IntInf.int)

We have provided you with a solution. Take a few minutes and look through
it and make sure you understand it. Try generating a few keys. Note that the
function does require industrialStrengthPrime to work correctly.

8. [2 points] If someone knows my public key (e, n) and knows the factors
of n, it is easy to recreate the steps in generating the key and learn my private
key. The security of the RSA scheme lies in the presumption that factoring is
a time-consuming process.

a. If my RSA public key is (22821, 52753), what is my private key? The
value of n is small enough to permit brute-force factoring. Include an ex-
ecutable expression that evaluates the private key and puts that result in a
variable called crackedPrivateKey. To get it to be of type IntInf.int you may

need to mulitply by one.crackedPrivateKey : (IntInf.int * IntInf.int)

Restriction: Please write your own brute-force factoring function. It will be
only a few lines of SML. Do not resort to an external program or one of the
“factoring services,” like WolframAlpha, on the internet.

b. The numbers in the key of part a can be represented with 16 bits. Suppose
that the private key can be found in t seconds. Estimate, as a multiple of t, the
time it would take to find the private key if the public key numbers required
160 bits to represent. Give a brief answer in a comment.

Extra credit

This assignment is due at the normal time on Sunday. However, to encourage
you to finish early and take a break from CS54 over fall break, you will



computer science 54, assignment 6 7

receive [0.5 points] of extra credit if you submit the assignment by 11:59pm
on Friday.

Appendix: Additional IntInf.int Functions

The template file contains several declarations to make your work easier.
Among them are re-declarations of the usual arithmetic operators so that
they operate on values of type IntInf.int. When you write something like
x + y the SML system assumes that x and y are of type IntInf.int, and
the result will be of the same type. One minor consequence of making the
change is that the ordinary operations on type int are “hidden,” and it is a
little cumbersome to use them—one must write Int.+(x,y). Fortunately,
there are only a few places where you will need to use ordinary int values.

For efficiency reasons, we use quot and rem in place of div and mod.

Random number generation In SML, the random number generator is of
type Random.rand. It is created with a seed, an ordered pair of integers. If
you create two generators with the same seed, they will give you the same
sequence of numbers. The file asgt07-template.sml provides a function

randomIntInf : Random.rand -> int -> IntInf.int

that generates numbers with the given number of bits. Here is an example of
its use.

- val seed = (47,42);

- val generator = Random.rand seed;

- val randomFirst = randomIntInf generator 100;

val randomFirst = 1167028856206085078454735779774 : IntInf.int

- val randomSecond = randomIntInf generator 100;

val randomSecond = 560072882339451739794345051343 : IntInf.int

Each subsequent call randomIntInf generator 100 gives a different
result. It is important to create one random number generator and use it
throughout your program.

The inverseMod function The function inverseMod is an SML implemen-
tation of the extension to Euclid’s algorithm described in Section III of RSA
Encryption.

inverseMod : IntInf.int * IntInf.int -> IntInf.int option

Given the pair of integers (u,m), inverseMod attempts to find the modulo-
m inverse of u. If u and m are relatively prime to one another, the function
returns SOME a, where a is the unique positive integer satisfying

u*a rem m = 1 and a < m.



computer science 54, assignment 6 8

If u and m are not relatively prime to one another, then there is no modulo-m
inverse of u, and the function returns NONE.


