
Computer Science 54

Assignment 5
Sunday, October 9 @ 11:59pm

https://xkcd.com/244/

This is an assignment about data representation and computer architecture.
It uses the CS52 Machine to demonstrate how programs are run on a real
computer and how recursion is implemented.

Partners On this assignment you may (and I’d encourage you to) work with
a partner. If you choose to, you must both be there anytime you’re working on
the assignment.

Write and submit (in the usual way) four files, nonuple.a52, power2.a52,
oddfact.a52, and asgt04-4.txt. Submit them as individual files; do not
zip them up!. The first three should be well-commented; there is no need for
documentation in the last.

The CS52 Machine simulator is a Java application that should run on most
platforms. It, along with the documentation and sample programs, is linked
from the course webpage page in the resources section. Please try and
download it ASAP to make sure you can get it running. If you don’t have
Java installed on your computer, you’re need to install a Java JRE (run-time
envivonment).

Write all of your programs to run on the CS52 Machine with the default
memory size of 512 bytes.

A note on debugging in the CS52 machine

Eventually (hopefully already!) you’ll get the hang of the CS52 assembly lan-
guage, the stack, and how to make function calls. Once you reach this stage,

https://xkcd.com/244/


computer science 54, assignment 5 2

if all goes well, you’ll code up your functions and with minimal tweaking,
they’ll work!

While I try and remain optimistic, most of you will still probably run into one
last bug or two (I almost always do!) that you can’t figure out by just looking
at the code. If you reach this point and you really understand what’s going
on in your code, but can’t find the bug, then the next step is to step through
the execution of your code and follow the execution. If you do this a step at a
time, you’ll eventually find the problem.

A few thoughts on this:

– Open your code in the simulator and run it a line at a time using the
“play” (arrow) button.

– Get out a piece of paper and write down a place for r2, r3 and the
stack. As you execute each line of code, update what you think should
be happening on the piece of paper and then double check that’s what
happened in the simulator. If they’re different, figure out why!

– Remember, r1 holds the location of the next location where a value
would be put on stack. To view the stack:

1) Look at the memory location stored in r1, i.e. the value in r1.

2) Look at the data view on the left of the simulator and find the
address (left part before the colon) corresponding to the address in
r1.

3) The address in r1 is not part of the stack. The first value in the
stack is the address immediately below the address in r1 (e.g. if r1
is 00da then the first value of the stack is 00dc). Remember, the
stack will grow towards smaller memory addresses, so the stack
itself will be in the larger memory addresses.

“When I first wrote one of the more com-
plicated functions, I had a small bug in my
function (I was doing a “loa r2 r1 6”
when it should have been“loa r2 r1 4”)
and I only found it by doing what I describe
above. I know it may seem a bit tedious, but
I promise you will find the bug much, much
faster using this approach than most others.”
–Dr. Dave

Using these things, you should be able to step through your code a line at a
time. If you understand what’s supposed to be happening, then this can be
very, very helpful at identifying small bugs.



computer science 54, assignment 5 3

Course feedback

We’re about a third of the way through the course and I wanted to checkin and
see how things are going. If you want (it’s anonymous), take 5 minutes and
let me know how things are going:

https://forms.gle/4RPWHcomZ4bcdsiQA

The fun stuff

1. [3 points] Write a CS52 Machine program nonuple.a52 that takes a
single value as an input and returns that value multiplied by 9. We want you
to have practice writing subprograms, so your program must have

• a function triple that that returns its argument tripled and
• a main section that reads the input, calls triple twice, and writes the
result.

The function triple must obey the register-use and stack conventions de-
scribed in class and the CS52 Machine documentation. Have your function
triple compute its result by performing two additions. Do not use a multi-
plication routine.

CS52 wants a value > -7

CS52 says > -63

2. [3 points] Write a CS52 program power2.a52 that takes as input a number
n and prints out 2n. To accomplish this write a function that computes powers
of 2 by following the recursive pattern suggested by the SML function below.

fun power2 k =

if k < 0 then

0

else if k = 0 then

1

else

double(power2(k-1));

“Doubling” may be implemented by adding a number to itself; there need not
be a separate doubling function nor should you use multiplication.

Your program must call a recursive function that accurately reflects the
pattern above. Here “recursive” means that the function saves the return
address on the stack and eventually jumps back to it, and the body of the
function contains a call to itself.

For example,

https://forms.gle/4RPWHcomZ4bcdsiQA


computer science 54, assignment 5 4

CS52 wants a value > 5

CS52 says > 32

3. [5 points] Write a CS52 Machine program oddfact.a52 that computes
the “odd factorial function,” defined as follows.

f (k) =


0 when k < 0,
1 when k = 0,
k · f (k − 1) when 0 < k and k is odd, and
f (k − 1) otherwise

For example,

f (6) = f (5)

= 5 ∗ f (4)

= 5 ∗ f (3)

= 5 ∗ 3 ∗ f (2)

= 5 ∗ 3 ∗ f (1)

= 5 ∗ 3 ∗ 1

= 15

Your program must call a recursive function that accurately reflects the
pattern above. Here “recursive” means that the function saves the return
address on the stack and eventually jumps back to it, and the body of the
function contains a call to itself.

Fashion your program after the sample programs, and adhere to the conven-
tions for register use. In particular, see the sample factorial program for
an example of using the library mullib.a52 for multiplication. You can
determine whether an integer is odd by computing the bitwise-and with 1.

CS52 wants a value > 6

CS52 says > 15

4. [5 points] This exercise gives us a glimpse into unsafe languages. Study
the program assign5-4.a52, both shown below and linked from the course
webpage. The heart of the program is a function accumulate which takes
values from the user and stores them in an array of size four. When the user
provides the value zero, the function returns 47.

There is a block of code at the label nevercalled that presumably will never Hint: Think about where things are on the
stack. There is nothing to prevent you from
providing more than four non-zero integers.be invoked. Your task is to find a sequence of input values that force the

program to execute those instructions and print the value −47. Do not change
the program.

Format your solution in a file named asgt04-4.txt with one integer (in



computer science 54, assignment 5 5

decimal) per line. Include only the integers—including the final zero—
without any comments or other text.



computer science 54, assignment 5 6

;
; assign05-4.a52
;
; CS Profs
;
; This short program illustrates how programs can be made to
; misbehave. The main function simply calls accumulate() and
; prints the value returned.
;
; The function accumulate allocates an array of four integers
; on the stack and fills it with values from the user. To keep
; things simple, accumulate does nothing with those values and
; returns the constant 47. (You can imagine in a more realistic
; program that it would return something like the sum of the
; values in the array.)
;
; There is a short sequence of instructions at the label
; nevercalled which, under circumstances that a programmer
; might consider normal, will never be executed. One of
; the tasks in this exercise is to force those instructions
; to be used by jumping to the location nevercalled.
;
;
; void main() {
; int result = accumulate();
; write(result);
; }
;
; int accumulate() {
; int a[4];
; int j = -1;
; int n = read();
; while (n != 0) {
; j++;
; a[j] = n;
; n = read();
; }
; return 47;
; }
;

lcw r1 stack ; set up the stack
lcw r2 accumulate ; call the function accumulate
cal r2 r2 ;
sto r3 r0 ; write the result
hlt ; quit

nevercalled
neg r3 r3 ; change the result
sub r2 r2 4 ; manufacture a return address

; (assumes a jmp to nevercalled,
; so that the location nevercalled
; is still in r2)

jmp r2 ; return

accumulate
psh r2 ; save the return address
sub r1 r1 8 ; make space for an array of four integers
mov r2 r1 ; r2 is an index into the array
loa r3 r0 ; get a value
beq r3 r0 accdone ; quit if the value is zero

accloop
add r2 r2 2 ; increment the array index
sto r3 r2 ; store it in the array
loa r3 r0 ; get another value
bne r3 r0 accloop ; if nonzero, go back for more

accdone
add r3 r0 47 ; return the value 47
add r1 r1 8 ; recover the original stack pointer
pop r2 ; recover the return address
jmp r2 ; return to caller

dat 16 ; no need for a huge stack
stack


