
Computer Science 54

Assignment 4
Sunday, October 2 @ 11:59pm

http://dilbert.com/strip/2017-01-28

Partners On this assignment you may (and I’d encourage you to) work with
a partner. If you choose to, you must both be there anytime you’re working on
the assignment.

Submission When you’re all done, run the check file. If all is well, submit
your assignment via Gradescope. If you worked with a partner, make sure
that both names are at the top of the file. Only one person needs to submit,
but make sure you add the other person when you submit.

I Substitution Ciphers, Concluded

On the last two assignments, we worked with substitution ciphers based
on cycles and pangrams. Another strategy for creating substitutions is to
shuffle the letters randomly. It has the advantage of being less predictable
than pangrams, but it makes the substitution harder to remember. Here is an
example of a random translation.

ABCDEFGHIJKLMNOPQRSTUVWXYZ 

PLUMNZFDEWQOVASTYRCI JHKGXB

Figure 1: The decoder pin from Radio
Orphan Annie’s Secret Society, 1935.

With this translation, SNOW becomes CASH, ARISTOTLE becomes PRECISION,
and SAGEHEN becomes CPFNDNA. Figure 1 shows an old child’s toy that
combines an arbitrary permutation with a shift. Its encryption is not any
better than a Caesar cipher because anyone can know the permutation. If
you and your co-conspirator are to preserve secrecy, you must decide on a
permutation and keep it secret.

After our work on previous assignments, encoding with random permutations
is not hard. We have only to find a way to generate the random permutations.
We will use a random number generator to do it. See the appendix to this

http://dilbert.com/strip/2017-01-28


computer science 54, assignment 4 2

assignment for instructions on how to create and use a random number
generator.

1. [3 points] A good way to produce a random permutation of the elements
in a list is with the Knuth shuffle. The idea is, given a list, to choose an
element from it at random. That element will be the first element of the per-
mutation. To get the rest of the permutation, take the chosen element out of
the list and recursively shuffle the remaining elements. The implementation
in SML is a natural list recursion, but it is a little different from our usual pat-
tern. Instead of taking the first element and the rest of the list, x and xs, we
take a random element and a list with the rest of the elements. The recursive
call is still on a list that is shorter than the original list, so we have a correct
recursive structure.

The function knuthShuffle has the following type signature. It takes a
random number generator and a list and returns a random permutation of the
list.

knuthShuffle : Random.rand -> ’a list -> ’a list

Note that you will have to first create the random number generator and then
pass it as a parameter to the knuthShuffle function. Like with our other encryption/decryption

functions, use a let expression to help do
the steps of the computation.In this case it is easier to think of recursion on the length of the list. Here is a

framework:

fun knuthShuffle gen lst =

if length lst < 2

then lst

else random-elt :: (knuthShuffle gen other-elts);

To get the random-elt and the list of other-elts you will need to use the
random number generator and some functions from the List package. Read
through the documentation for the List package at http://sml-family.
org/Basis/list.html. You can use the functions by typing the package’s
name and then the name of the function. For example, typing

List.nth ([#"A", #"B", #"C", #"D"], 2);

into SML results in a response of

val it = #"C" : char

II Representing Numbers in Other Bases

We normally write numbers in decimal notation, base 10. There is nothing
special about 10 except that it is widely used today. The Aztec, Mayan, and
Celtic civilizations used the vigesimal system, base 20. The Sumerians and
Babylonians used the sexagesimal system, base 60. In computer science,

http://sml-family.org/Basis/list.html
http://sml-family.org/Basis/list.html


computer science 54, assignment 4 3

we sometimes use the binary system, base 2, and the hexadecimal system,
base 16. The octal system. base 8, is occasionally used as well.

Let us consider systems of representing numbers using bases between 2 and
20, inclusive. For the digits beyond 9, we will use letters, starting at A and
omitting I because it is too easily confused with the digit 1. The value of the
base is often called the radix. We will specify the radix, when necessary, as a
decimal subscript. For example, the following are different representations for
the same number:

1011112 578 4710 3B12 2F16 2720

For problems 2 - 5 we will assume radix values between 2 and 20 and raise
an exception for any of the functions that receive input that violates this
assumption.

2. [1 point] Write a function called digitToChar that takes as input a
number representing a single digit and returns the character that corresponds
to that digit. For example,

digitToChar 8 returns the character #"8", and
digitToChar 11 returns the character #"B".

This function should only be called with digits for radix values up to 20,
inclusive. Declare and raise an exception RadixException if you receive a
digit that is not valid for that radix range. . Take a look at digitToInt and

intToDigit from the last assignment.
Note that A-Z have sequential underlying
number representations (accessible via ord)

digitToChar : int -> char

3. [1 point] Write the inverse function charToDigit that takes a character
representing a digit and returns its numerical representation. For example,
charToDigit #"B" returns 11. Raise the RadixException if the input
character does not represent represent a valid digit given our radix constraint
of at most 20, inclusive.

charToDigit : char -> int

4. [2 points] Now that we have digit-level functions, we can use them to write
functions that process numbers. Write a function toRadixString that takes
a radix and an integer and produces the string representation of the integer in
the specified radix. For example,

toRadixString (3,47) returns the string "1202", and
toRadixString (18,71) returns "3H".

Raise the exception RadixException if the radix is not between 2 and 20,
inclusive, or if the integer is negative. Non-zero values should be represented
without leading zeroes. Zero should be represented by a string with a single



computer science 54, assignment 4 4

zero. Write your function from scratch without using any built-in conversion
functions.

toRadixString : int * int -> string

5. [2 points] Write the inverse function fromRadixString that takes a radix
and a string of “digits” and produces the corresponding integer. For example,

fromRadixString (3,"1202") returns the integer 47, and
fromRadixString (18,"3H") returns 71.

Raise RadixException if the radix is not between 2 and 20, inclusive; if the
string is empty; or if any of the “digits” in the string are out of range for the
given radix. Allow the SML system to raise the exception Overflow if the
string represents an integer that is too large for the type int.

fromRadixString : int * string -> int

Last thoughts on number representation In SML, the largest value for an
int is 230 − 1, or 1073741823. On current 64-bit processors, the largest
integer is 263 − 1, a considerably larger number that is nearly 1019 but is still
too small for many purposes. To get around the limitation, programmers use
packages that represent very large integers as lists (or arrays) of “digits” with
a very large radix. For example, we could take the radix to be 65, 536, and our
numbers would be represented by lists of “digits” that range from 0 through
65, 535. In SML, there is a datatype IntInf that is implemented in that way,
only with an even larger radix.

Appendix I: Random Number Generators

For Problem 1, you will need to generate random numbers. Informally speak-
ing, a sequence of numbers is random if the next number is not predictable
from its predecessors. True randomness is difficult to find. People who are
serious about random numbers often use natural phenomena, like cosmic rays
or quantum events, to generate sequences of bits. For many uses, however,
pseudo-random numbers that are generated by an algorithm are adequate.
Most modern programming languages have facilities for generating pseudo-
random numbers using an algebraic formula that produces sequences that
will eventually repeat, but have no apparent pattern in the short run. The
generators start with a seed and generate numbers based on that value. If two
people use the same seed, they will get identical sequences of numbers. To
avoid such duplication, people often take a reading of the computer’s clock
and use the low order bits that represent tiny fractions of a second for the
seed.

In SML, we create a random number generator with two integers as seeds.



computer science 54, assignment 4 5

val generator = Random.rand(47,42); Don’t use 47 and 42. Pick your own seeds.

The generator has type Random.rand. Using the generator, we can generate
sequences of pseudo-random numbers.

Random.randInt : Random.rand -> int

Random.randNat : Random.rand -> int

Random.randReal : Random.rand -> real

Random.randRange : (int * int) -> Random.rand -> int

The function Random.randRange will be most useful for us here. The call

Random.randRange (0,6) generator Notice that producing random numbers
is in conflict with one of the fundamental
principles of functional programming—
calling a function with the same arguments
should always produce the same value. The
random number functions have the side
effect of changing some hidden value that
affects the next result.

will produce a pseudo-random value between 0 and 6, inclusive.

References and Credits

The image in Figure 1 is from the Scottish Rite Masonic Museum & Library—http://nationalheritagemuseum.typepad.

com/library_and_archives/2010/03/radio-orphan-annies-secret-society.html.

The image in Figure ?? is licensed under CC BY-SA 2.0 via Commons—https://commons.wikimedia.org/wiki/File:

Mastermind.jpg#/media/File:Mastermind.jpg.

http://nationalheritagemuseum.typepad.com/library_and_archives/2010/03/radio-orphan-annies-secret-society.html
http://nationalheritagemuseum.typepad.com/library_and_archives/2010/03/radio-orphan-annies-secret-society.html
https://commons.wikimedia.org/wiki/File:Mastermind.jpg#/media/File:Mastermind.jpg
https://commons.wikimedia.org/wiki/File:Mastermind.jpg#/media/File:Mastermind.jpg

	Substitution Ciphers, Concluded
	Representing Numbers in Other Bases

