
Computer Science 54

Assignment 3
Sunday, September 25 @ 11:59pm

https://xkcd.com/859/

This assignment gives you additional practice with lists and recursion.

Partners On this assignment you may (and I’d encourage you to) work with
a partner. If you choose to, you must both be there anytime you’re working on
the assignment.

Submission When you’re all done, run the check file. If all is well, submit
your assignment via Gradescope. If you worked with a partner, make sure
that both names are at the top of the file. Only one person needs to submit,
but make sure you add the other person when you submit.

I Keeping up with the Cartesians

René Descarte is known for, among other things, developing analytic geom- “I recurse, therefore I am.”
etry. He used ordered pairs of numbers to specify points in the plane. We
now use the phrase cartesian product to mean a collection of ordered pairs in
which the components are taken from the specified sets. If A and B are sets,
we have

A × B = {(a, b) | a ∈ A and b ∈ B}.

Instead of sets we will use lists, and we will write a function cartesian that
creates a list of ordered pairs from the elements of two lists. Our function will
recurse over both lists, but we will write it in two parts—one for each list.

1. [2 points]

a. To start, write a function precart which takes an element and a list, and
forms the list of pairs in which the first component is the given element. For
example,precart 1 [2,3,4] returns [(1,2),(1,3),(1,4)].

precart : ’a -> ’b list -> (’a * ’b) list
As shown in the type signature, the compo-
nents do not have to be integers. In fact, the
elements can come from lists of different
types.b. Now use precart to create a function cartesian that computes the full

cartesian product of two lists. For example,

https://xkcd.com/859/

computer science 54, assignment 3 2

cartesian [1,2] [3,4,5] returns
[(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)].

cartesian : ’a list -> ’b list -> (’a * ’b) list

II Fun with Arithmetic

2. [2 points] We can think of a natural number as being represented by a list
of digits, with the least significant digit at the front of the list. For example,
47 is represented by [7,4].

Notice that the representation is not unique;
47 is represented by [7,4] and also
[7,4,0,0]. What is the shortest representa-
tion for zero?

a. Declare an inverse function fromDigitList to convert from lists of digits
to non-negative integers. Declare an exception BadDigit and raise it when
the function finds a number that is not in the range from 0 through 9.

fromDigitList : int list -> int

Hint: Horner’s method is a way to evaluate polynomials efficiently. We can
view the multi-digit number dn−1 . . . d2d1d0, expressed as [d0,d1,d2,...,dn−1]

in our list representation, as a polynomial evaluated at X = 10.

dn−1 . . . d2d1d0 = d0 + d110 + d2102 + . . . + dn−110n−1

= d0 + 10 ·
(
d1 + d210 + . . . + dn−110n−2)

For example, 342 has d2 = 3, d1 = 4 and d0 = 2, and we can write 342 =
2 + 10 ∗ (4 + 3 ∗ 10).

b. Write a function toDigitList to convert from non-negative integers to
lists of digits. Declare an exception NegativeNumber and raise it when the
argument is negative.

toDigitList : int -> int list

III The Luhn Algorithm

The Luhn Algorithm is a way of verifying the validity of credit card and other
identifying numbers. Here are the steps to verify a number:

• Write the number as a sequence of decimal digits in the usual left-to-
right order. Starting at the right, double every second value. (That is,
start by doubling the next-to-last digit.)

• Add the digits of the resulting sequence.
• Compute the remainder when the sum is divided by 10.
• The number is valid if the remainder is 0.

For example, here is what we would do if we start with the number 13573:

computer science 54, assignment 3 3

separate the digits 1 3 5 7 3
double every other one 1 6 5 14 3
add the digits 1 6 5 1 + 4 3
compute the total 1 + 6 + 5 + 5 + 3 = 20

The number is valid because 20 is a multiple of 10. Usually, the last (right-
most) digit of an account number is the check digit. It is chosen to make the
Luhn algorithm work out correctly. In the above example, 1357 is the “real”
account number and 3 is the check digit.

Most credit card numbers are too long to be represented by SML integers, so
Security warning: Be cautious with real
credit card numbers and avoid typing them
into files. There are websites like http:
//www.getcreditcardnumbers.com/
from which you can get “valid looking”
numbers for testing.

Life warning: Do not try to buy anything
with a card number from one of these sites.

we will present the numbers as strings of digits. The functions below permit
you to translate back and forth between digits (of type char) and integers (of
type int). Copy them into your file.

exception NotADigit;

fun digitToInt c =

if Char.isDigit c then

ord c - ord #"0"

else

raise NotADigit;

fun intToDigit k =

if 0 <= k andalso k < 10 then

chr (k + ord #"0")

else

raise NotADigit;

3. [2 points] Getting it started

a. The first task is to write a function stringToIntList that takes a string
and produces a list of the corresponding digit values. Because the Luhn
algorithm works from the right of the string, it is most convenient to write
the list in reverse order. For example, stringToIntList "13573" returns Suggestion: Use map and explode.
[3,7,5,3,1].

stringToIntList : string -> int list

b. Write a function doubleDigitSum that takes an integer k between 0 and 9,
and returns the sum of the digits in 2k. Your function must give the correct Hint: The sum of the digits in 2k is either

2k or 2k − 9. Why?sums for arguments between 0 and 9 inclusive; the results for other arguments
will never be used.

doubleDigitSum : int -> int

4. [2 points] Almost there

http://www.getcreditcardnumbers.com/
http://www.getcreditcardnumbers.com/

computer science 54, assignment 3 4

Write a function luhnSum that takes a list of digit values and calculates the
sum of the digits after every second element of the list has been doubled. For
example, as computed above, luhnSum [3,7,5,3,1] returns 20.

Several approaches are possible. One is to write a recursive function that
processes two list elements at a time. Another approach is to extract two
different lists, map doubleDigitSum over one of them, and then add the
elements of both lists.

luhnSum : int list -> int

5. [2 points] There it is

a. Put everything together and write a function luhnCheck that determines if
the account number, presented as a string, is valid. The function will simply
be a combination of functions that you have already written.

luhnCheck : string -> bool

b. Finally, the last step is to calculate the check digit. Write a function
calculateCheckDigit that takes an account number and calculates the
check digit for that number. For example, calculateCheckDigit "1357"

would give us the check digit 3. The final account number would then be
the actual account number with this digit at the end. One way to calculate
the check digit is to append a zero on the right of the account number and
compute the Luhn sum.

calculateCheckDigit : string -> int

c. The Luhn algorithm will detect any single-digit error, and it will detect
most transpositions of adjacent digits. Find a valid account number with a
pair of adjacent digits d and e for which d and e are different and the number
remains valid when d and e are swapped. Put your answer in a comment.

IV Substitution Ciphers, Revisited

On Assignment 2 we wrote a function to encrypt using Caesar ciphers,
which employ a simple shift of the alphabet. We now turn to a slightly more
sophisticated system.

Suppose you and your fellow spy want to exchange secret messages. You
agree on a pangram, a sentence that contains all the letters of the alphabet, to
use as a key. The order of the letters in the pangram will specify the letter-for-
letter substitution you will use. Here are a few examples of pangrams.

A QUICK BROWN FOX JUMPS OVER THE LAZY DOG

CRAZY FREDRICK BOUGHT MANY VERY EXQUISITE OPAL JEWELS

GRUMPY WIZARDS MAKE A TOXIC BREW FOR THE JOVIAL QUEEN

computer science 54, assignment 3 5

Suppose you chose the third of these. Then to encode your message, you
would replace A with G, replace B with R, and so forth. Pangrams that use
each letter only once are rare and hard to remember, so we have to elimi-
nate duplicate letters. For the third “grumpy” pangram, we would have the
following translation.

ABCDEFGHIJKLMNOPQRSTUVWXYZ

GRUMPY WIZADSKETOXCBFHJVLQN

6. [2 points] uniquify?

a. Write a function keepFirst that removes duplicates from a list, keeping The function uniquify that was presented
in class retains the last occurrence of each
element. For this function, consider using an
accumulator, like we did with revAux.

the first occurrence of each element.

keepFirst : ’’a list -> ’’a list

b. Use keepFirst to write a function subst that takes a pangram and
returns a list of pairs of characters. Each pair will specify one substitution in Get used to using some of the tools from the

SML library, such as ListPair.zip.the cipher. For example, using the “grumpy” pangram,

subst "GRUMPY...QUEEN" would return
[(#"A",#"G"),(#"B",#"R"),...,(#" ",#"N")].

You may assume that the given pangram is presented as a string with only
uppercase letters and spaces.

subst : string -> (char * char) list

7. [2 points] Substitution > Caesar

We are now ready to assemble the parts of a substitution cipher. Your func-
tion will resemble the one for caesar from Assignment 2. Feel free to
borrow code from Assignment 2. As in Assignment 2, build up your solution
step by step using a let expression.

a. Write a function substEncipher which takes a pair consisting of two
strings, a pangram key and a message, and returns the encrypted string.

substEncipher : string * string -> string

b. Write the corresponding substDecipher which takes a pangram key and
an encoded string and returns the plaintext message. The pangram key will be
the one used to encipher. All you have to do is invert the substitution.

substDecipher : string * string -> string

Once your functions are working properly, you will be able to encrypt a
message with the key and then decrypt it to get the original message back.

computer science 54, assignment 3 6

V Extra credit: Making Change

[0.5 points] Given a list of coin denominations and an amount of money, we This is the famous Change Problem, a
tradition in the CS department since 2003.want to list all the ways to make change in that amount using the specified

coins. For example, there are two ways to make seven cents from nickels and
pennies:

[[1,1,1,1,1,1,1], [5,1,1]]

Write an SML function change that takes a list of denominations and an
amount and produces a list of all the ways to make change in that amount.
You may assume that the amount is not negative and that the coin denomina-
tions are all positive.

change : int list -> int -> int list list

This exercise is intended to be an example of a nonstandard use of list
recursion. Be guided by the following:

• Think about the base cases. What is the result when the amount is 0? or
negative? What is the result when the list of coins is empty?

• Here is a strategy to reduce a general case to simpler ones: Let a be
the amount and d be the first denomination on the list. There are two A “use-it-or-lose-it” argument.
possibilities: either you do not use d at all and you have to make change
in the amount a from the other denominations, or else you use d once
and you have to finish the job by making change in the amount of a − d,
using the entire list including d.

• The order of coins in a single possibility is not relevant. “Two pennies
and a nickel” is the same as “a nickel and two pennies.” If you follow
the previous suggestion, you will automatically avoid duplicate pos-
sibilities. When you are finished, observe that the coins appear in a
possibility in the same order—perhaps with repetitions or omissions—
as in the original list of coins.

• The possibilities themselves may appear in any order, depending on
how you implement the strategy above.

• Use the type information as a guide to constructing the final result.
Remember that change returns a list of lists.

	Keeping up with the Cartesians
	Fun with Arithmetic
	The Luhn Algorithm
	Substitution Ciphers, Revisited
	Extra credit: Making Change

