
Computer Science 54

Assignment 2
Sunday, September 18 @ 11:59pm

https://xkcd.com/759/

In this assignment, we will be exploring writing more interesting functions
in SML. For each function, make sure that you understand the type signature
and what the function is doing. Try and work incrementally by playing with
subparts of your function in the SML shell.

Partners On this assignment you may (and I’d encourage you to) work with
a partner. If you choose to, you must both be there anytime you’re working on
the assignment.

Submission When you’re all done, run the check file. If all is well, submit
your assignment via Gradescope. If you worked with a partner, make sure
that both names are at the top of the file. Only one person needs to submit,
but make sure you add the other person when you submit.

1. [1 points] Warming up!

Write a curried function count that takes as in put a list and a value and
counts the number of times that item occurs in the list Depending on how you write this, you

will likely get the warning Warning:
calling polyEqual. This is one of the
few warning you can ignore in this class.

count: ’’a list -> ’’a -> int

For example,

- count [0, 1, 0, 1, 0, 0] 0;

val it = 4 : int

- count (explode "banana") #"a";

val it = 3 : int

https://xkcd.com/759/

computer science 54, assignment 2 2

2. [1 point] Takeuchi

The Takeuchi function was developed in the 1970’s as a benchmark for Lisp
systems. It makes a large number of recursive calls without generating large
integers. Write a function tak to compute the Takeuchi function.

tak(x, y, z) =


y if x ≤ y, and
tak(tak(x − 1, y, z),

tak(y − 1, z, x),
tak(z − 1, x, y)) otherwise.

tak : int * int * int -> int

3. [2 points] Zip it up!

The built-in function ListPair.zip takes a pair of lists and returns a list of
pairs. If the lists are of unequal lengths, the trailing elements of the longer list
are discarded. Write your own version of the function, called myZip. This time, the recursion will be carried out

on both arguments simultaneously. Think
about the base case(s).myZip : ’a list -> ’b list -> (’a * ’b) list

- myZip [1, 2, 3] [4,5];

val it = [(1,4),(2,5)] : (int * int) list

4. [2 points] What goes around comes around

Write an SML function cycle that rotates the elements in a list by a given
amount. For example, cycle 1 is a function that removes the first element
of a list and places it at the end. The call cycle 2 is equivalent to two
consecutive calls to cycle 1.

If the argument n in cycle n is zero or another multiple of the length of the
list, then cycle n returns the list unchanged. If the argument n is negative,
then cycle n lst and cycle (length lst + n) lst give identical
results.

Observe that the recursion is on the integer,
not the list.

cycle: int -> ’a list -> ’a list

- cycle 3 [10, 20, 30, 40];

val it = [40,10,20,30] : int list

- implode (cycle 4 (explode "I love CS"));

val it = "ve CSI lo" : string

There are many ways to solve this problem, but one is to utilize an auxiliary
function that simply cycles the list by one element. You can then use that
function in your general cycle function. The approach has the added benefit
that you can debug your auxiliary function independently.

computer science 54, assignment 2 3

5. [2 points] I think I cons, I think I cons, ...

Write a function consAll that takes a list of lists and an element, and
prepends the element to every member of the list of lists. The order of the arguments to consAll may

seem strange, but it will be convenient when
we use consAll in a later assignment.consAll : ’a list list -> ’a -> ’a list list

- consAll [[1,2], [], [3]] 8;

val it = [[8,1,2],[8],[8,3]] : int list list

6. [2 points] Is it even or green?

The built-in function List.filter takes a predicate and a list and returns
the sublist consisting of those elements that satisfy the predicate. For exam-

A predicate is a function that returns a
boolean value. An argument satisfies the
predicate if the predicate returns true for
that argument.

ple, if one had a function isGreen that returned true whenever its argument
was green, then

List.filter isGreen

would be a function that takes a list and returns a (possibly shorter, possibly
even empty) list with only green elements.

For another example. Flashback to assignment 0!

List.filter isEven

is a function that “filters out” the non-even elements of a list.

- myFilter isEven [1, 2, 3, 4, 5, 6];

val it = [2,4,6] : int list

An important thing to remember is that the first argument to List.filter is
a function.

Write your own version myFilter of the List.filter function. The type signature for myFilter shows that
it is a curried function with two arguments
where the first argument is a function. Make
sure you understand this.

myFilter : (’a -> bool) -> ’a list -> ’a list

Substitution Ciphers

For millennia, people have used encryption to send secret messages. We
will encounter some of the techniques as the course progresses. In all cases,
the plaintext is the human-readable message that is to be kept secret. The
ciphertext is the encoded information that is, one hopes, inaccessible to
anyone who does not know how to decrypt it. Often there is a number or
a string or an algorithm, called the key, that allows someone to decode the
cipher text.

The Caesar cipher, or shift cipher, is one of the simplest forms of encryption. I come to encrypt Caesar, not to praise him.
The plaintext that men utter lives after them;
The ciphertext is oft interred with their bones;

—with apologies to W. Shakespeare

We choose a constant shift distance d and replace each letter by its dth
successor. The strings below show the substitutions for a shift of 4.

computer science 54, assignment 2 4

ABCDEFGHIJKLMNOPQRSTUVWXYZ

EFGHIJKLMNOPQRSTUVWXYZ ABCD

The letter A becomes E, B becomes F, and so on. When we reach the end of
the alphabet, we wrap around to the beginning. To keep things simple, we use
only uppercase letters plus the blank space, denoted . When we encrypt the
blank space, we hide the word structure of the message and make it harder
to decrypt. Many child’s toys and newspaper puzzles do not encrypt blank
spaces, making the messages easier to decrypt. Figure 1 shows a piece of
contemporary jewelry that encrypts messages using a Caesar cipher.

Caesar ciphers are easy to decipher because all you need to know is the trans-
lation of one letter. That reveals the shift and all the letter translations are
known. With our alphabet, including the blank space, there are 27 different
shifts. One of them, the zero shift, does not change the message at all and
is useless for secrecy. Thus there are 26 possible keys—much too small
a number. An adversary could easily try all 26 possibilities and decrypt a
message. We will study more sophisticated and secure ciphers in subsequent
assignments.

Figure 1: A “computer” for a Caesar
cipher. The inner ring of letters can rotate
to produce any possible shift. We encrypt
from the inner ring to the outer. The position
shown is for a shift of 25; the letter C
is translated to B. As of January 2017,
the device is available for purchase at
www.etsy.com/shop/RETROWORKSLLC.

For example, with a shift of size 4, SAGEHEN becomes WEKILIR, and MEET
AT MIDNIGHT becomes QIIXDEXDQMHRMKLX.

For now, let us lay out some functions that will help us to manage characters
in lists and strings.

Char.isAlpha : char -> bool returns true if the character is a
letter.

Char.isUpper : char -> bool returns true if the character is an
uppercase letter.

Char.isSpace : char -> bool returns true if the character is a
blank space.

Char.toUpper : char -> char changes a lowercase letter to
uppercase, leaving all other characters unchanged.

explode : string -> char list converts a string into the corre-
sponding list of characters.

implode : char list -> string converts a list of charecters into
a string with the same characters.

Play with these functions a bit on the SML command-line to make sure you
understand what they do. For example, typing Char.isAlpha #"," yields
the value false.

We want our encryption function to translate a string into a string, but it is
easier to work with lists of characters. Therefore, we will write functions that
operate on character lists. When we put it all together, the first step will be a
call to explode and the last step will be a call to implode.

www.etsy.com/shop/RETROWORKSLLC

computer science 54, assignment 2 5

7. [2 points] It’s cleanup time

The first step in encryption is to “clean up” the plaintext message. Write a
function sanitize that takes a list of characters and returns a list from which
all characters other than blanks and letters have been removed and in which
all letters have been shifted to uppercase.

Assume that the plaintext string has already been exploded and work with a
list of characters so that

implode (sanitize (explode "I recurse, therefore I am."))

yields "I RECURSE THEREFORE I AM".

sanitize : char list -> char list

8. [3 points] Et tu, Brute?

Write a function caesar that takes an integer and a string and encodes the
string using the shift specified by the integer. For example,

caesar (7, "I recurse, therefore I am.") yields
"PGYLJAYZLG OLYLMVYLGPGHT".

This is an exercise in piecing together functions that you have already written
and ones that have already been mentioned. Present the sequential steps in The function funPairs from class may

be helpful in carrying out the actual
transformation of letters. use the question
mark, #"?", as the default character.

some easy-to-understand way. Here is one possible structure:

fun caesar (n, plainString) =

let

val plainList = ...

...

val cipherList = ...

in

implode cipherList

end;

caesar : int * string -> string

