
Computer Science 54

Assignment 1
Sunday, September 11 @ 11:59pm

https://xkcd.com/221/

This assignment consists of some warm-up exercises to give you more
comfort with the systems we will be using. Work in your cs54 directory.
Copy the template file assign1-template.sml from the course web page,
rename it as assign1.sml, and put your solutions in the places indicated.
(Take a look at Assignment 0 if you need a refresher.) Copy the check file
assign1-check.sml at the same time. If a problem asks for a solution
that is not executable code—a number or explanation, for example—put the
solution in a comment.

If you haven’t yet, please read “An SML Style Guide,” Part III of A Brief
Introduction to SML, on the course page and follow its specifications and
guidelines as you write your functions.

Signatures Please write your functions so that their names and signatures
exactly match the specifications in the problem statements. Most of the spec-
ifications call for curried functions, so a function that takes three arguments
would have a signature like this:

myCurriedSolution : int -> int -> int -> string

and be called like this:

myCurriedSolution 3 6 7;

Curried functions may seem a little unnatural at first, but they end up being
easy and useful.

The alternative is an uncurried function which would have a signature like
this: Be sure to recognize that the symbols -> and

* have significantly different meanings.
myUncurriedSolution : int * int * int -> string

and be called like this:

myUncurriedSolution (3, 6, 7);

https://xkcd.com/221/


computer science 54, assignment 1 2

Partners On this assignment you may (and I’d encourage you to) work with
a partner. If you choose to, you must both be there anytime you’re working on
the assignment.

Submission When you’re all done, run the check file. If all is well, submit
your assignment via Gradescope. If you worked with a partner, make sure
that both names are at the top of the file. Only one person needs to submit,
but make sure you add the other person when you submit.

I Functions and Recursion on the Natural Numbers

0. [0 points] Not required (but not a bad idea)

Come by one of the instructors’ offices, introduce yourself and tell them
something interesting about yourself.

1. [1 point] Warming up

Write a function cube that computes the cube of an integer.

cube : int -> int

2. [1 point] A littler warmer

Write a function min3 that takes a triple of integers (a three-tuple, not a list!)
and returns the smallest of the three. For example, min3 (29,183,47)
returns 29. Take a few minutes to think about the logic

so that you do not make it more complicated
than it needs to be. Remember that the
if-then-else construction represents a
value.

min3 : int * int * int -> int

3. [2 points] Now we’re getting into it

a. Write a recursive function factorial to compute the factorial function.
(Remember that 0! = 1. Have your function return 0 if the input is negative.)

factorial : int -> int

b. Experiment to find the largest n for which factorial computes n!. Do
not include the experimental code in your file; simply place the answer, as a
constant, in a declaration for maxFactorial. Here is a sample with much too
large a value.

val maxFactorial = 367;

c. Reals have a much larger range of values than integers. Write another You will need to use the built-in function
real to convert the int argument into a
real.

function called realFactorial that takes an int argument, converts it into
a real, carries out all the calculations with type real, and returns a real
result.



computer science 54, assignment 1 3

realFactorial : int -> real

d. Experiment to find the largest n for which realFactorial computes a
value for n! without error. Expect to see a considerably larger value than you

You should be able to calculate larger
factorials using realFactorial. If your
maximum value is the same or only slightly
greater than that for factorial, you are
probably still doing your calculations with
integers. In that case, take another look at
realFactorial.

got in part b. Place your answer in a declaration for maxRealFactorial.

val maxRealFactorial : int

II Recursion on Lists

In the previous exercises we considered recursion on the natural numbers.
Now we turn to list recursion. In this part, you will write your own versions
of some of SML’s built-in list operations.

You are restricted to using only the following features of the language:

the constant nil or [] Notice that the list does not include the
append operator @. Be sure that you
understand the difference between :: and @.

the cons operator ::
pattern-matching in function definitions
if-then-else constructions when absolutely necessary

4. [1 point] How long is that list?

Write a function myLength which counts the number of elements in a list.

myLength : ’a list -> int

5. [1 point] Let’s put that function to use

Write a function cubeAll that finds the cube of every element in a list of
integers. For example, cubeAll [1,2,3] returns [1,8,27]. You are
encouraged to use the function cube that you wrote in Problem 1.

cubeAll : int list -> int list

6. [1 point] Double the fun

Write a function duplicate that duplicates each element of a list. For
example, duplicate [1,7,3] returns [1,1,7,7,3,3]. Notice that duplicate can be used on all

kinds of lists, not just lists of integers.duplicate : ’a list -> ’a list

7. [1 point] The end is in sight

Write a function lessThanList that takes as input a number and a list of Pay close attention to the base case of your
recursion. The number 10 is indeed less
than every element of the empty list.

numbers and returns true if the number is less than all of the numbers in the
list, false otherwise. For example,

lessThanList 10 [11, 47, 12] returns true, but
lessThanList 10 [11, 10, 47] returns false (because 10 is not
less than 10).



computer science 54, assignment 1 4

lessThanList : int -> int list -> bool

8. [1 point] A bit more interesting

Write a function myAppend which appends its second argument onto the end
of the first. You may not use the append (@) operator.

The recursion will be carried out on only
one of the two arguments. It is important to
choose the appropriate one.

myAppend : ’a list -> ’a list -> ’a list

Hint: What should be the result of myAppend [] [1, 2, 3]?


	Functions and Recursion on the Natural Numbers
	Recursion on Lists

