Lecture 22: Analyzing Algorithms

CS 51P November 30, 2023

————
Sorting Algorithms

Selection Sort Insertion Sort
def selection sort(1l): def insertion _sort(l):
for each pos in list # for each obj in list
for pos in range(len(l)): for pos in range(len(l)):
find obj H~—+—t——ttrt " I ect position
min_index = Merge Sort
for i in ra def merge sort helper(lst, start, end):) and
if 1[i] < # Base Case [curr_pos-1]:
min ind if end-start < 2: R
— return l[curr_pos-1])=\
. -1],1[curr_pos])
swap that # Recursive Case pos - 1
(1[pos], 1[else:
(1[min middle = start + 1nt((end start) / 2)

‘WhICh algorlthm s better? E

What Makes a Good Algorithm?

Suppose you have two possible algorithms that do
the same thing; which is better?

What do we mean by better?
- Correct(er)?
- Faster?
- Less space?
- Less power consumption?
- Easier to code?
- Easier to maintain?
- Required for homework?

Basic Step: one “constant time” operation

Constant time operation: its time doesn’t depend on

the size or length of anything. Always roughly the same.
Time is bounded above by some number

Example Basic steps:
Access value of a variable, list element, or object attr
Assign to a variable, list element, or object attr
Do one arithmetic or logical operation
Call a function

Counting Steps
Store sum of ©..n-1 in sum | Statement: # times done
sum = © sum = 0 |
for i in range(n): 1=V n
sum = sum + i sum = sum + 1 n
Total steps: 2n + 1

350

All basic steps take time 1. |3
There are n loop iterations. |5,

Therefore, takes time 150

. 100
proportional to n. 0

Linear algorithm in n

0 20 40 60 80 100

Not all operations are basic steps

Store n copies of ‘¢’ in s

S — min
for i in range(n):
s =5+ 'c'

Concatenation is not a
basic step. For each |,
concatenation creates and
fills a sequence with |
elements.

Not all operations are basic steps

Store n copies of ‘¢’ in s
S — min
for i in range(n):

s =s + 'c'

350
300
250
200
150

Concatenation is not a
basic step. For each |,
concatenation creates and

fills a sequence with i o
elements. 0

Statement: # times # steps
g="" 1 1
1=V n 1
s=s+'c’; n 1

Total steps: (n-1)*n/2 +n+ 1

Quadratic algorithm in n

20 40 60 80 100

Linear versus quadractic

Store sum of 1..n in sum # Store n copies of ‘c’ in s
sum = @ s = ""
for i in range(l, n+l): for i in range(n):
sum = sum + Kk; s =s + 'c’
Linear algorithm Quadratic algorithm

In comparing the runtimes of these algorithms, the exact number
of basic steps is not important. What's important is that

One is linear in n—takes time proportional to n
One is quadratic in n—takes time proportional to n?

Looking at execution speed

Number of
operations
execlted

2n+2, n+2, n are all linear in n,
proportional to n

n*n ops

2n + 2 ops

n+ 2 ops

n ops

Constant time

0123 ..

size n of the list

"Big O" Notation

‘n?2 +2n + 5

- 1000n + 25000
271

.24 100
15

nlogn + 25n

0(n?)
O(n)
0(2™)
O(nlogn)

Order of growth

How Fast is Fast enough?

O(1) constant excellent
O(log n) logarithmic excellent
O(n) linear good
O(n log n) nlogn pretty good
O(n?) quadratic maybe OK
O(n3) cubic not good
O(2") exponential too slow
O(n!) factorial too slow

Evaluating Speed of Selection Sort
def selection sort(1l): m

for each pos in the List
for pos in range(len(1l)): n O(1)
find the object that should be there

min_index = pos n O(1)
for i in range(pos+1, len(1l)): n*O(n) O(1)
if 1[i] < 1[min_index]: n*O(n) O(1)
min_index = i <=n*0O(n) O(1)

swap the object to position pos
(1[pos], 1[min_index]) = \ n O(1)
(1[min_index], 1[pos])

Selection Sort runs in time 0(n?) ‘

Comparison

worst case O(n?)
best case O(n?)
avg case O(n?)
space O(1)

Evaluating Speed of Insertion Sort
def insertion _sort(1l): m

for each obj at position pos
for pos in range(1, len(l)): n O(1)

move the obj to the right position
curr_pos = pos n O(1)
while curr_pos > © and \ <=n*0O(n) O(1)
1[curr_pos] < 1l[curr_pos-1]:
(1[curr_pos], 1l[curr_pos-1]) = \ <=n*0O(n) O(1)
(1[curr_pos-1], 1[curr_pos])
curr_pos -= <=n*0O(n) O(1)

Insertion Sort runs in time 0(n?) ‘

———————————
Comparison

_ selection sort | insertion sort

worst case O(n?) O(n?)
best case O(n?) O(n)
avg case O(n?) O(n?)

space O(1) O(1)

Evaluating Speed of Merge Sort
def merge_sort_helper(lst, start, end): m

Base Case

if (end-start) < 2: 1 o(1)
return <=1 O(1)

Recursive Case

else:
middle = start + int((end-start)/2) 1 O(1)
merge _sort _helper(lst, start, middle) ?
merge_sort _helper(lst, middle, end) ?
merge(lst, start, end) ?

def merge_sort(lst):
merge_sort helper(lst, 0, len(lst))

Evaluating Speed of Merge Sort
def merge(lst, start, end): m

middle = (end-start)//2 O(1)

first = 1lst[:middle] 1 O(end-start)
pos, i, j = start, start, middle 1 3
while i < middle and j < end: EerEEn iz o(1)
if first[i] < 1lst[j]: (end-start)/2 o)
1st[pos] = first[i] SRR O(1)
i += 1 <=(end-start)/2 O(1)
else:
1st[pos] = 1st[j] <=(end-start)/2 O(1)
jo+=1 <=(end-start)/2 O(1)
pos += 1 (end-start)/2 O(1)
if j == end: 1 1
while i < middle: <=(end-start)/2 o(1)
1st[pos] = first[i] <=(end-start)/2 O(1)

pos + start)/2 0(1)

3 4o]Merge runs in time 0(n) |Start),2 o)

———————————
Evaluating Speed of Merge Sort

3

1 6
2 1 6 3 9 5

/\. /\.
/\/\/\ 0\
\/ \./ \/\./

\/ \ /

1 3 - 9

\ ./

1 2 3 4 5 6 9 10

‘Merge Is executed for O(log(n)) times ‘

———————————
Comparison

_ selection sort |insertion sort | merge sort

worst case O(n?) O(n?) O(n log n)
best case O(n?) O(n) O(n log n)
avg case O(n?) O(n?) O(n log n)

space O(1) O(1) O(n)

————
Sorting in Python

- List.sort()

- Sorts list in place
- Optional argument reverse=True to reverse order (greatest->least)

- sorted(Ist)

- Creates sorted copy of list
- Optional arguments reverse

