
CS 51P November 30, 2023

Lecture 22: Analyzing Algorithms

Sorting Algorithms
Selection Sort

def selection_sort(l):

for each pos in list
for pos in range(len(l)):

find obj that should be there
min_index = pos
for i in range(pos+1, len(l)):
if l[i] < l[min_pos]:
min_index = i

swap that obj into position pos
(l[pos], l[min_index]) = \

(l[min_index], l[pos])

Insertion Sort

def insertion_sort(l):

for each obj in list
for pos in range(len(l)):

move obj to correct position
curr_pos = pos
while curr_pos > 0 and

l[curr_pos]<l[curr_pos-1]:
(l[curr_pos],l[curr_pos-1])=\
(l[curr_pos-1],l[curr_pos])

curr_pos = curr_pos - 1

Merge Sort
def merge_sort_helper(lst, start, end):
 # Base Case
 if end-start < 2:
 return
 # Recursive Case
 else:
 middle = start + int((end-start) / 2)
 merge_sort_helper(lst, start, middle)
 merge_sort_helper(lst, middle, end)
 merge(lst, start, end)

Which algorithm is better?

3

Suppose you have two possible algorithms that do
the same thing; which is better?
What do we mean by better?

• Correct(er)?
• Faster?
• Less space?
• Less power consumption?
• Easier to code?
• Easier to maintain?
• Required for homework?

What Makes a Good Algorithm?

• Correct(er)?
• Faster?
• Less space?

Basic Step: one “constant time” operation

4

Example Basic steps:
• Access value of a variable, list element, or object attr
• Assign to a variable, list element, or object attr
• Do one arithmetic or logical operation
• Call a function

Constant time operation: its time doesn’t depend on
the size or length of anything. Always roughly the same.
Time is bounded above by some number

Counting Steps

5

Store sum of 0..n-1 in sum
sum = 0
for i in range(n):
 sum = sum + i

All basic steps take time 1.
There are n loop iterations.
Therefore, takes time
proportional to n.

Statement: # times done
sum = 0 1
i= v n
sum = sum + i n
Total steps: 2n + 1

0
50
100
150
200
250
300
350

0 20 40 60 80 100

Linear algorithm in n

Statement: # times done
s = "" 1
i = v n
s = s + 'c' n
Total steps: 2n + 1

Not all operations are basic steps

6

Store n copies of ‘c’ in s
s = ""
for i in range(n):
 s = s + 'c'

Concatenation is not a
basic step. For each i,
concatenation creates and
fills a sequence with i
elements.

❌

Not all operations are basic steps

7

Statement: # times # steps
s = "" 1 1
i = v n 1
s = s + 'c'; n i
Total steps: (n-1)*n/2 + n + 1

0
50
100
150
200
250
300
350

0 20 40 60 80 100

Store n copies of ‘c’ in s
s = ""
for i in range(n):
 s = s + 'c'

Concatenation is not a
basic step. For each i,
concatenation creates and
fills a sequence with i
elements.

Quadratic algorithm in n

Linear versus quadractic

8

In comparing the runtimes of these algorithms, the exact number
of basic steps is not important. What’s important is that

One is linear in n—takes time proportional to n
One is quadratic in n—takes time proportional to n2

Store n copies of ‘c’ in s
s = ""
for i in range(n):
 s = s + 'c'

Store sum of 1..n in sum
sum = 0
for i in range(1, n+1):
 sum = sum + k;

Linear algorithm Quadratic algorithm

Looking at execution speed

9

size n of the list0 1 2 3 …

Number of
operations
executed

Constant time

n ops

n + 2 ops

2n + 2 ops
n*n ops

2n+2, n+2, n are all linear in n,
proportional to n

"Big O" Notation
• 𝑛! + 2𝑛 + 5 𝑂(𝑛!)
• 1000𝑛 + 25000 𝑂(𝑛)

•
!!

"#
+ 𝑛"$$ 𝑂(2%)

• 𝑛 log 𝑛 + 25𝑛 𝑂(𝑛 log 𝑛)

Order of growth

How Fast is Fast enough?

12

O(1) constant excellent
O(log n) logarithmic excellent

O(n) linear good
O(n log n) n log n pretty good

O(n2) quadratic maybe OK
O(n3) cubic not good
O(2n) exponential too slow
O(n!) factorial too slow

Evaluating Speed of Selection Sort
def selection_sort(l):

 # for each pos in the list

 for pos in range(len(l)):

 # find the object that should be there

 min_index = pos

 for i in range(pos+1, len(l)):

 if l[i] < l[min_index]:

 min_index = i

 # swap the object to position pos

 (l[pos], l[min_index]) = \

 (l[min_index], l[pos])

Times # Steps

n O(1)

n O(1)
n*O(n) O(1)
n*O(n) O(1)
<= n*O(n) O(1)

n O(1)

Selection Sort runs in time 𝑂(𝑛!)

Comparison

selection sort

worst case O(n2)
best case O(n2)
avg case O(n2)
space O(1)

Evaluating Speed of Insertion Sort
def insertion_sort(l):

 # for each obj at position pos

 for pos in range(1, len(l)):

 # move the obj to the right position

 curr_pos = pos

 while curr_pos > 0 and \

 l[curr_pos] < l[curr_pos-1]:

 (l[curr_pos], l[curr_pos-1]) = \

 (l[curr_pos-1], l[curr_pos])

 curr_pos -= 1

Times # Steps

n O(1)

n O(1)
<=n*O(n) O(1)

<= n*O(n) O(1)

<= n*O(n) O(1)

Insertion Sort runs in time 𝑂(𝑛!)

Comparison

selection sort insertion sort

worst case O(n2) O(n2)
best case O(n2) O(n)
avg case O(n2) O(n2)
space O(1) O(1)

Evaluating Speed of Merge Sort
def merge_sort_helper(lst, start, end):
 # Base Case
 if (end-start) < 2:
 return
 # Recursive Case
 else:
 middle = start + int((end-start)/2)
 merge_sort_helper(lst, start, middle)
 merge_sort_helper(lst, middle, end)
 merge(lst, start, end)

def merge_sort(lst):
 merge_sort_helper(lst, 0, len(lst))

Times # Steps

1 O(1)
<=1 O(1)

1 O(1)
?
?
?

Evaluating Speed of Merge Sort
def merge(lst, start, end):
 middle = (end-start)//2
 first = lst[:middle]
 pos, i, j = start, start, middle
 while i < middle and j < end:
 if first[i] < lst[j]:
 lst[pos] = first[i]
 i += 1
 else:
 lst[pos] = lst[j]
 j += 1
 pos += 1
 if j == end:
 while i < middle:
 lst[pos] = first[i]
 pos += 1
 i += 1

Times # Steps

1 O(1)

1 O(end-start)

1 3

(end-start)/2 O(1)

(end-start)/2 O(1)

<=(end-start)/2 O(1)

<=(end-start)/2 O(1)

<=(end-start)/2 O(1)

<=(end-start)/2 O(1)

(end-start)/2 O(1)

1 1

<=(end-start)/2 O(1)

<=(end-start)/2 O(1)

<=(end-start)/2 O(1)

<=(end-start)/2 O(1)Merge runs in time 𝑂(𝑛)

Evaluating Speed of Merge Sort

Merge is executed for O(log(n)) times

Comparison

selection sort insertion sort merge sort

worst case O(n2) O(n2) O(n log n)
best case O(n2) O(n) O(n log n)
avg case O(n2) O(n2) O(n log n)
space O(1) O(1) O(n)

Sorting in Python
• List.sort()
• Sorts list in place
• Optional argument reverse=True to reverse order (greatest->least)

• sorted(lst)
• Creates sorted copy of list
• Optional arguments reverse

