

Lecture 22: Analyzing Algorithms

CS 51P

November 30, 2023

Sorting Algorithms

Selection Sort

```
def selection_sort(l):  
  
    # for each pos in list  
    for pos in range(len(l)):
```

```
        # find obj that should be there  
        min_index = pos  
        for i in range(pos+1, len(l)):  
            if l[i] < l[min_index]:  
                min_index = i  
  
        # swap that obj with current obj  
        (l[pos], l[min_index]) = (l[min_index], l[pos])
```

Insertion Sort

```
def insertion_sort(l):  
  
    # for each obj in list  
    for pos in range(len(l)):
```

```
        # move obj to correct position  
        curr_pos = pos  
        curr_pos -= 1  
        while curr_pos >= 0 and l[curr_pos] > l[curr_pos + 1]:  
            l[curr_pos], l[curr_pos + 1] = l[curr_pos + 1], l[curr_pos]  
            curr_pos -= 1
```

Merge Sort

```
def merge_sort_helper(lst, start, end):  
  
    # Base Case  
    if end - start < 2:  
        return  
  
    # Recursive Case  
    else:  
        middle = start + int((end - start) / 2)  
        merge_sort_helper(lst, start, middle)  
        merge_sort_helper(lst, middle + 1, end)  
  
        merge(lst, start, end)
```

Which algorithm is better?

What Makes a Good Algorithm?

Suppose you have two possible algorithms that do the same thing; which is *better*?

What do we mean by *better*?

- **Correct(er)?**
- **Faster?**
- **Less space?**
- Less power consumption?
- Easier to code?
- Easier to maintain?
- Required for homework?

Basic Step: one “constant time” operation

Constant time operation: its time doesn't depend on the size or length of anything. Always roughly the same. Time is bounded above by some number

Example Basic steps:

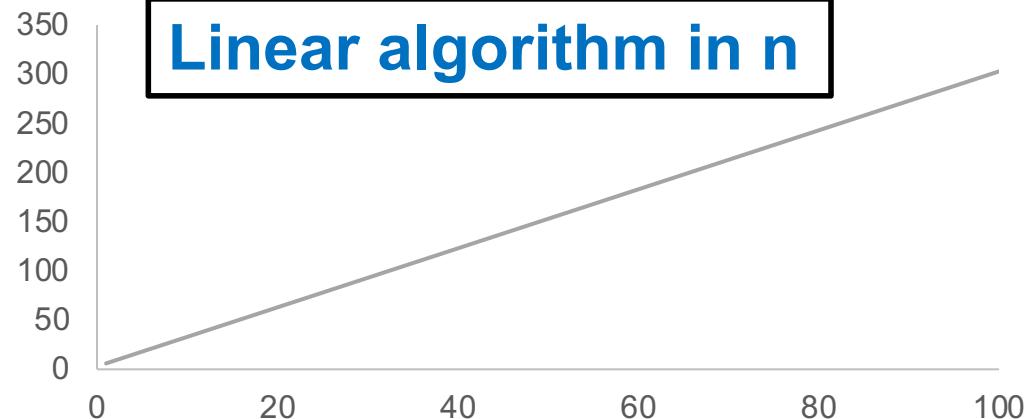
- Access value of a variable, list element, or object attr
- Assign to a variable, list element, or object attr
- Do one arithmetic or logical operation
- Call a function

Counting Steps

```
# Store sum of 0..n-1 in sum
sum = 0
for i in range(n):
    sum = sum + i
```

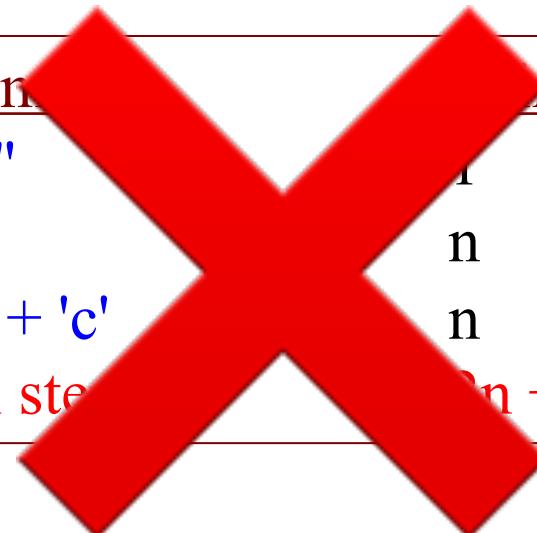
<u>Statement:</u>	<u># times done</u>
sum = 0	1
i = v	n
sum = sum + i	n
Total steps:	2n + 1

All basic steps take time 1.
 There are n loop iterations.
 Therefore, takes time
 proportional to n .



Not all operations are basic steps

```
# Store n copies of 'c' in s
s = ""
for i in range(n):
    s = s + 'c'
```



<u>Statement</u>	<u>Times done</u>
<code>s = ""</code>	1
<code>i = v</code>	n
<code>s = s + 'c'</code>	n
<code>Total steps</code>	$3n + 1$

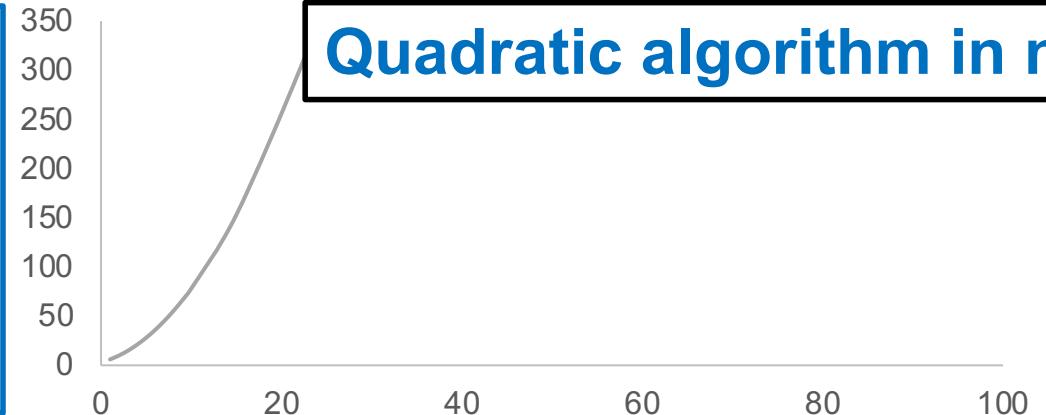
Concatenation is not a basic step. For each i , concatenation creates and fills a sequence with i elements.

Not all operations are basic steps

```
# Store n copies of 'c' in s
s = ""
for i in range(n):
    s = s + 'c'
```

<u>Statement:</u>	<u># times</u>	<u># steps</u>
s = ""	1	1
i = v	n	1
s = s + 'c';	n	i
Total steps:		(n-1)*n/2 + n + 1

Concatenation is not a basic step. For each i , concatenation creates and fills a sequence with i elements.



Linear versus quadratic

```
# Store sum of 1..n in sum      # Store n copies of 'c' in s
sum = 0                         s = ""
for i in range(1, n+1):          for i in range(n):
    sum = sum + k;              s = s + 'c'
```

Linear algorithm

Quadratic algorithm

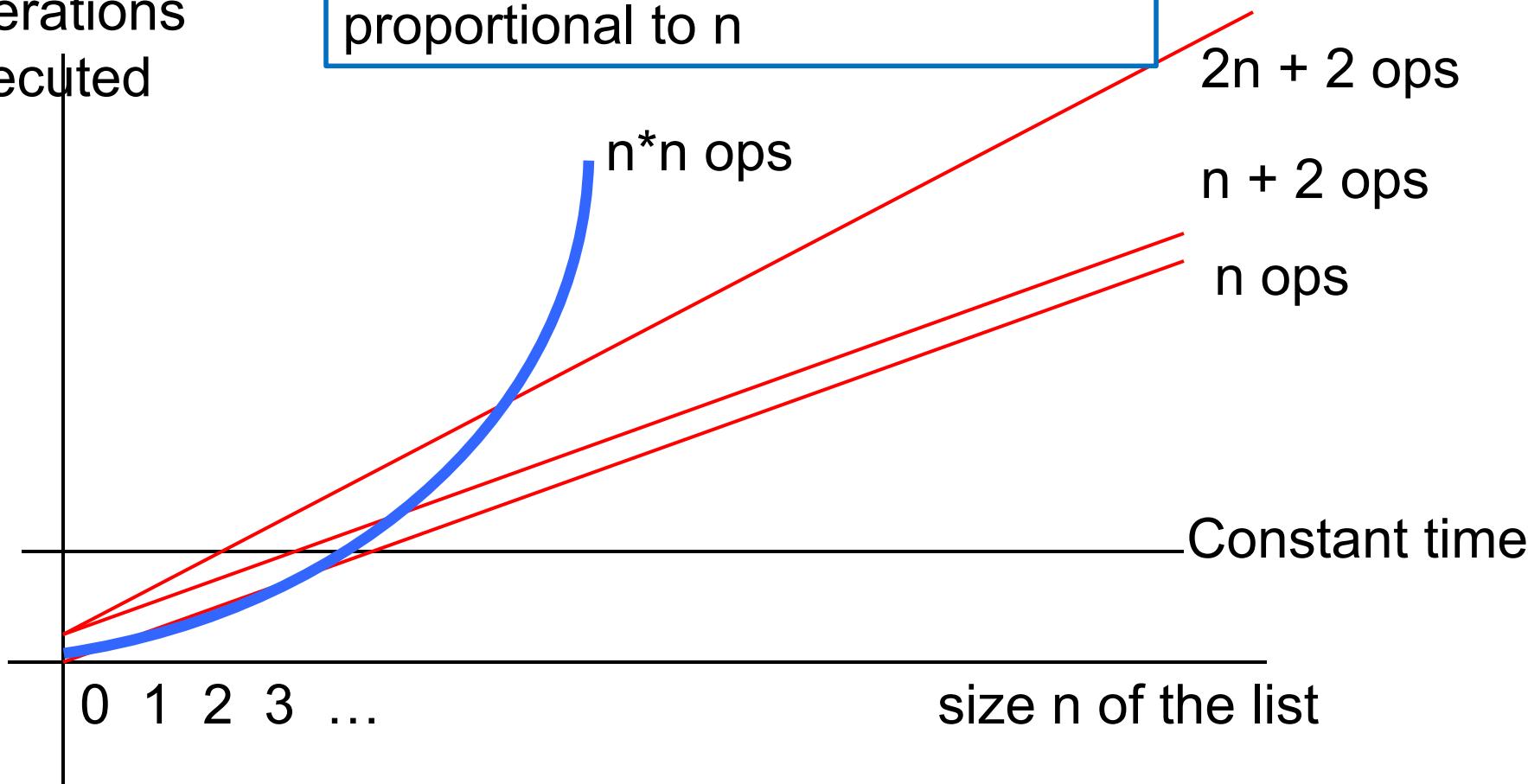
In comparing the runtimes of these algorithms, the exact number of basic steps is not important. What's important is that

One is linear in n —takes time proportional to n
One is quadratic in n —takes time proportional to n^2

Looking at execution speed

Number of operations executed

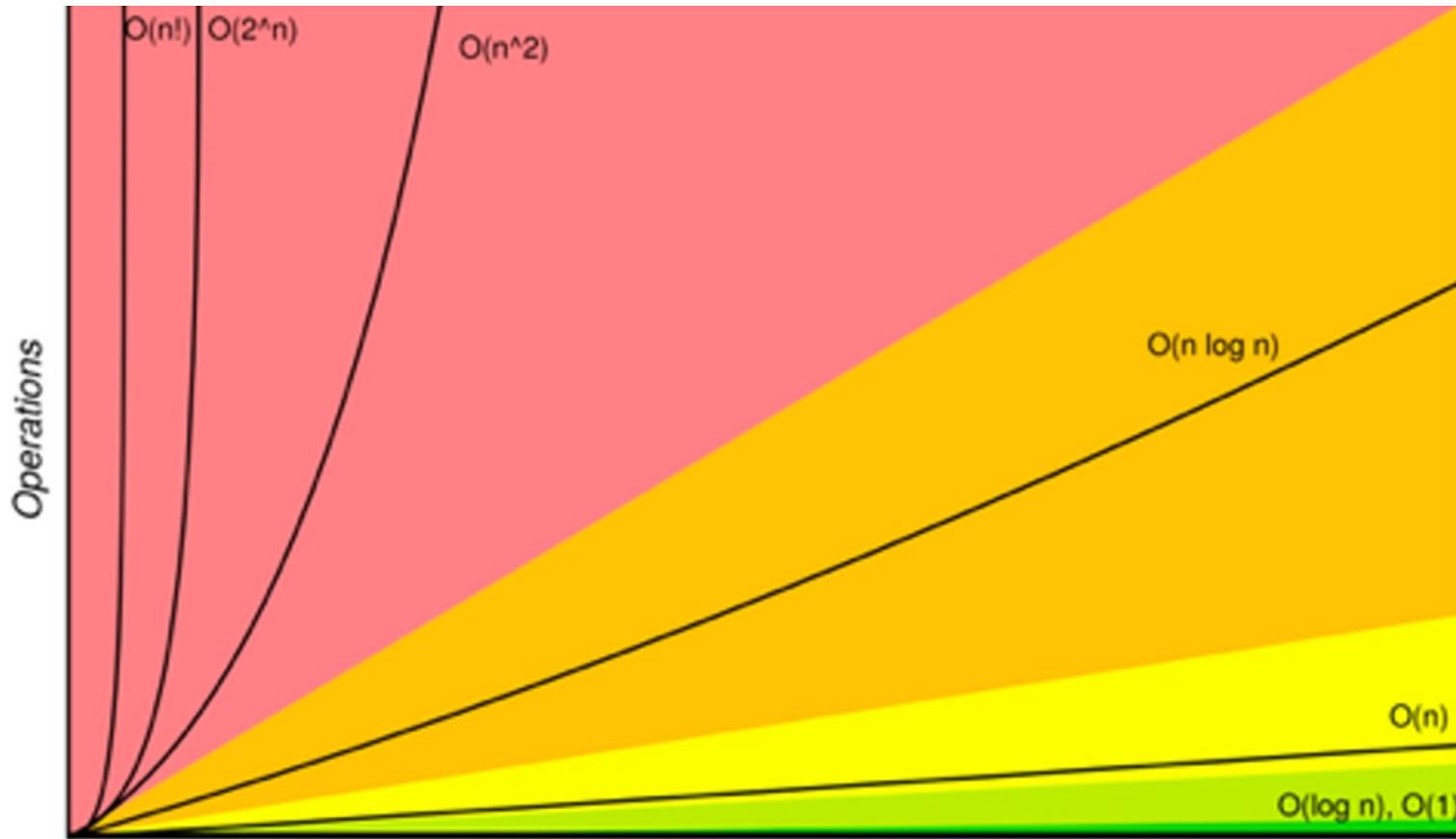
2n+2, n+2, n are all linear in n, proportional to n



"Big O" Notation

- $n^2 + 2n + 5$ $O(n^2)$
- $1000n + 25000$ $O(n)$
- $\frac{2^n}{15} + n^{100}$ $O(2^n)$
- $n \log n + 25n$ $O(n \log n)$

Order of growth



How Fast is Fast enough?

$O(1)$	constant	excellent
$O(\log n)$	logarithmic	excellent
$O(n)$	linear	good
$O(n \log n)$	$n \log n$	pretty good
$O(n^2)$	quadratic	maybe OK
$O(n^3)$	cubic	not good
$O(2^n)$	exponential	too slow
$O(n!)$	factorial	too slow

Evaluating Speed of Selection Sort

```
def selection_sort(l):  
    # for each pos in the list  
    for pos in range(len(l)):  
        # find the object that should be there  
        min_index = pos  
        for i in range(pos+1, len(l)):  
            if l[i] < l[min_index]:  
                min_index = i  
  
        # swap the object to position pos  
        (l[pos], l[min_index]) = \  
            (l[min_index], l[pos])
```

# Times	# Steps
n	$O(1)$
n	$O(1)$
$n^*O(n)$	$O(1)$
$n^*O(n)$	$O(1)$
$\leq n^*O(n)$	$O(1)$
n	$O(1)$

Selection Sort runs in time $O(n^2)$

Comparison

	selection sort
worst case	$O(n^2)$
best case	$O(n^2)$
avg case	$O(n^2)$
space	$O(1)$

Evaluating Speed of Insertion Sort

```
def insertion_sort(l):  
    # for each obj at position pos  
    for pos in range(1, len(l)):  
  
        # move the obj to the right position  
        curr_pos = pos  
        while curr_pos > 0 and \  
            l[curr_pos] < l[curr_pos-1]:  
            (l[curr_pos], l[curr_pos-1]) = \  
                (l[curr_pos-1], l[curr_pos])  
            curr_pos -= 1
```

# Times	# Steps
n	$O(1)$
n	$O(1)$
$\leq n^*O(n)$	$O(1)$
$\leq n^*O(n)$	$O(1)$
$\leq n^*O(n)$	$O(1)$

Insertion Sort runs in time $O(n^2)$

Comparison

	selection sort	insertion sort
worst case	$O(n^2)$	$O(n^2)$
best case	$O(n^2)$	$O(n)$
avg case	$O(n^2)$	$O(n^2)$
space	$O(1)$	$O(1)$

Evaluating Speed of Merge Sort

```
def merge_sort_helper(lst, start, end):  
    # Base Case  
    if (end-start) < 2:  
        return  
    # Recursive Case  
    else:  
        middle = start + int((end-start)/2)  
        merge_sort_helper(lst, start, middle)  
        merge_sort_helper(lst, middle, end)  
        merge(lst, start, end)
```

```
def merge_sort(lst):  
    merge_sort_helper(lst, 0, len(lst))
```

# Times	# Steps
1	$O(1)$
≤ 1	$O(1)$
1	$O(1)$
	?
	?
	?

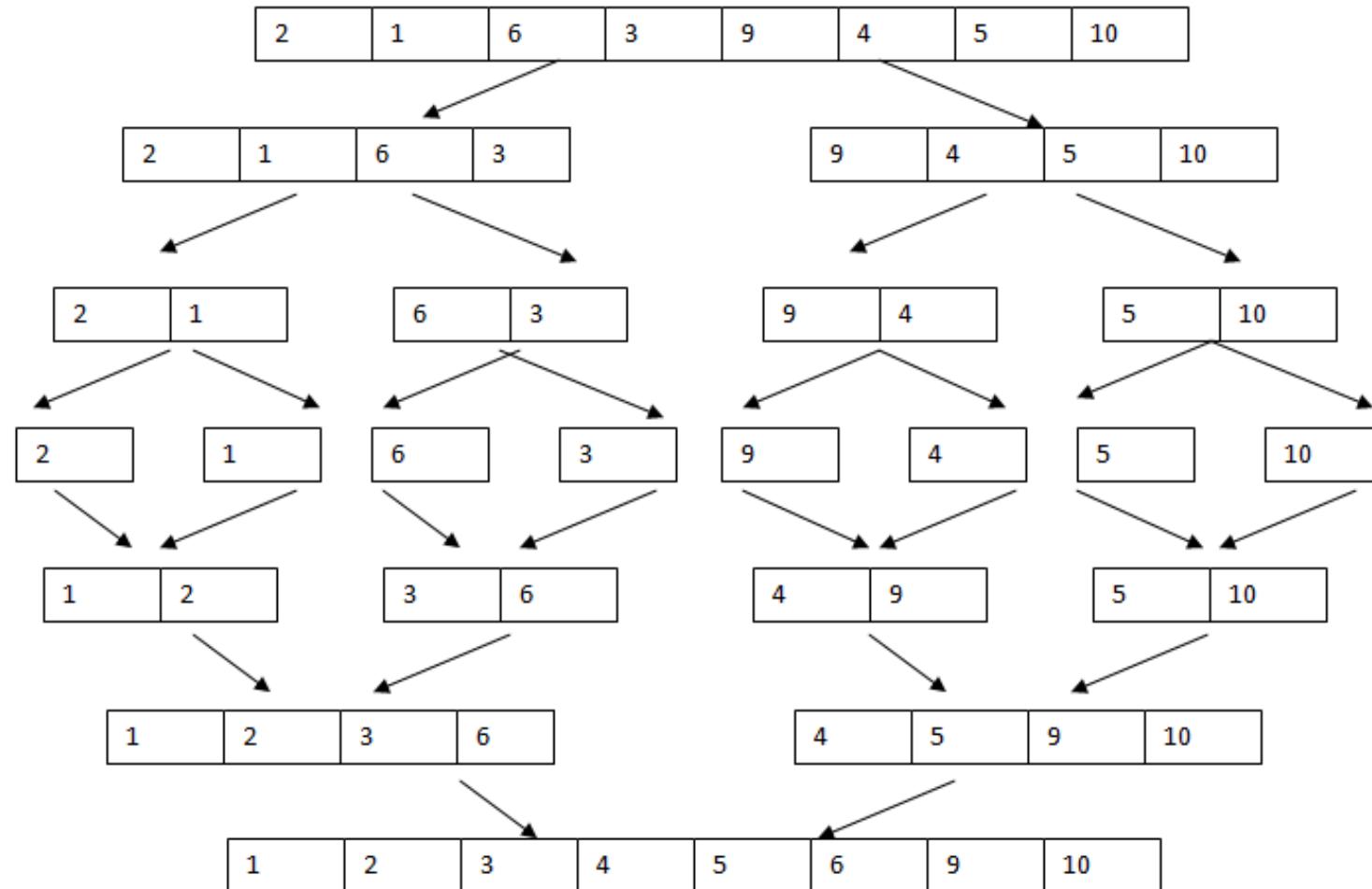
Evaluating Speed of Merge Sort

```
def merge(lst, start, end):  
    middle = (end-start)//2  
    first = lst[:middle]  
    pos, i, j = start, start, middle  
    while i < middle and j < end:  
        if first[i] < lst[j]:  
            lst[pos] = first[i]  
            i += 1  
        else:  
            lst[pos] = lst[j]  
            j += 1  
        pos += 1  
    if j == end:  
        while i < middle:  
            lst[pos] = first[i]  
            pos += 1  
            i += 1
```

# Times	# Steps
1	$O(1)$
1	$O(end-start)$
1	3
$(end-start)/2$	$O(1)$
$(end-start)/2$	$O(1)$
$\leq (end-start)/2$	$O(1)$
$\leq (end-start)/2$	$O(1)$
$\leq (end-start)/2$	$O(1)$
$\leq (end-start)/2$	$O(1)$
$(end-start)/2$	$O(1)$
1	1
$\leq (end-start)/2$	$O(1)$
$\leq (end-start)/2$	$O(1)$
$\leq (end-start)/2$	$O(1)$
$\leq (end-start)/2$	$O(1)$

Merge runs in time $O(n)$

Evaluating Speed of Merge Sort



Merge is executed for $O(\log(n))$ times

Comparison

	selection sort	insertion sort	merge sort
worst case	$O(n^2)$	$O(n^2)$	$O(n \log n)$
best case	$O(n^2)$	$O(n)$	$O(n \log n)$
avg case	$O(n^2)$	$O(n^2)$	$O(n \log n)$
space	$O(1)$	$O(1)$	$O(n)$

Sorting in Python

- `List.sort()`
 - Sorts list in place
 - Optional argument `reverse=True` to reverse order (greatest->least)
- `sorted(lst)`
 - Creates sorted copy of list
 - Optional arguments `reverse`